Bayesian Prognostic Model for Genomic Discovery in Bipolar Disorder

Swetha S. Bobba, Amin Zollanvari, Gil Alterovitz

Abstract

Integrative approaches that incorporate multiple experiments have shown a potential application in the discovery of disease-related attributes. This study presents a unique, data-driven, integrative, Bayesian approach to merge gene expression data from various experiments into prognostic models and evaluate them for the discovery of bipolar-related attributes. Two prognostic models were constructed: a singlystructured Bayesian and a Bayesian multi-net model, which differentiated Bipolar disease state at a higher level of abstraction. These prognostic models were evaluated to find the most common attributes responsible for the disease and their AUROC, using external crossvalidation. The multi-net model achieved an AUROC of 0.907 significantly outperforming the single-structured model with an AUROC of 0.631. The study found six new genes and five chromosomal regions associated with the bipolar state. Enrichment analysis performed in this study revealed biological concepts and proteins responsible for the disease. We anticipate this method and results will be used in the future to integrate information from multiple experiments for the same or related phenotypes of various diseases and also to predict the disease state earlier.

References

  1. Clark, P. A., te Poele, R., Wooster, R., and Workman, P. (2001) “Gene Expression Microarray Analysis in cancer biology, pharmacology, and drug development: progress and potential”. In Biochem. Pharmacol., 62, 1311-1336.
  2. Collins, F. S., Morgan,M., and Patrinos, A. (2003) “The Human Genome Project: Lessons from Large-Scale Biology”. In Science, 300, 286-290.
  3. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L. C., De Moor, B., Marynen,P., Hassan,B., et al. (2006) “Gene prioritization through genomic data fusion”. In Nat. Biotechnol., 24, 537-544.
  4. Calvo, S., Jain, M., Xie, X., Sheth, S. A., Chang, B., Goldberger, O . A., Spinazzola, A., Zeviani, M., Carr, S. A., Mootha,V. K. (2006) “Systematic identification of human mitochondrial disease genes through integrative genomics”. In Nat. Genet., 38, 576-582.
  5. Freudenberg, J. and Propping, P. (2002) “A similaritybased method for genome-wide prediction of disease relevant human genes. Bioinformatics”, In 18 Suppl 2, 110-115.
  6. English, S. B. and Butte, A. J. (2007) “Evaluation and integration of 49 genome-wide experiments and the prediction of previously unknown obesity-related genes”. In Bioinformatics, 23, 2910-2917.
  7. Pearl, J. (1988) “Probabilistic reasoning in intelligent systems: networks of plausible inference”. Morgan Kaufmann, New York.
  8. Alterovitz, G., Liu, J., Afkhami, E., and Ramoni, M. F. (2007) “Bayesian methods for proteomics”. In Proteomics, 7, 2843-2855.
  9. Sebastiani, P., Ramoni, M. F., Nolan, V., Baldwin, C. T., and Steinberg, M. H. (2005) “Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia”. In Nat. Genet., 37, 435-440.
  10. Friedman, N. (2004) “Inferring cellular networks using probabilistic graphical models”. In Science, 303, 799-805.
  11. Jansen, R., Yu, H., Greenbaum, D., Kluger,Y., Krogan, N. J., Chung, S., Emili, A., Snyder, M., Greenblatt, J. F., Gerstein, M. (2003) “A Bayesian networks approach for predicting protein-protein interactions from genomic data”. In Science, 302, 449-453.
  12. Friedman, N., Geiger, D., and Goldszmidt, M. (1997) “Bayesian network classifiers”. In Machine Learning, 29, 131-163.
  13. Beynon S, Soares-Weiser K, Woolacott N, Duffy S, Geddes JR. “Pharmacological interventions for the prevention of relapse in bipolar disorder: a systematic review of controlled trials”. J Psychopharmacol. 2009; 23(5):574-591.
  14. Schiffer R. B. “Psychiatric disorders in medical practice”. In: Goldman L., Ausiello D., eds. Cecil Medicine. 23rd ed. Philadelphia, Pa:Saunders Elsevier; 2007:chap 420.
  15. Benazzi F. “Bipolar disorder -- focus on bipolar II disorder and mixed depression”. In Lancet. 2007;369:935- 945.
  16. Morriss R. K, Faizal M. A, Jones A. P, Williamson P. R., Bolton C., McCarthy JP. “Interventions for helping people recognise early signs of recurrence in bipolar disorder”. In Cochrane Database Syst Rev. 2007;24;(1):CD004854.
  17. Sachs G. S, Nierenberg A. A, Calabrese J. R, et al. “Effectiveness of adjunctive antidepressant treatment for bipolar depression”. In N Engl J Med. 2007;356:1711-1722.
  18. Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., and Edgar, R. (2007) “NCBI GEO: mining tens of millions of expression profiles - database and tools update”. Nucleic Acids Res., 35, D760-765.
  19. Harry Zhang "The Optimality of Naive Bayes". In FLAIRS2004 conference. (available online: PDF)
  20. Caruana, R. and Niculescu-Mizil, A.: "An empirical comparison of supervised learning algorithms". In Proceedings of the 23rd international conference on Machine learning, 2006. (available online PDF)
  21. George H. John and Pat Langley (1995). “Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence”. pp. 338-345. Morgan Kaufmann, San Mateo.
  22. Dudley, J. T., Tibshirani,R., Deshpande,T., and Butte, A. J. (2009) “Disease Signatures are Robust across tissues and experiments”, Mol. Syst. Biol., 5, 307.
  23. Dalma-Weiszhausz, D. D., Warrington,J., Tanimoto, E. Y., and Miyada, C. G. (2006) “The Affymetrix Gene Chip Platform: An Overview”. Methods Enzymol., 410, 3-28.
  24. Gentleman, R., Carey, V., Huber, W., Irizarry, R., and Dudoit,S. (2005) “Bioinformatics and Computational Biology Solutions Using R and Bioconductor”. Springer, Heidelberg.
  25. Benjamini, Y. and Hochberg, Y. (1995) “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing”. J. R. Stat. Soc. Series B, 57, 289-300.
  26. Boukaert, R. R. (2004) “Bayesian Network Classifiers in Weka”. Available at http://mayor.dia.fi.upm.es/ concha/SPAM/boukaert.pdf.
  27. Chow, C. K. and Liu, C. N. (1968) “Approximating Discrete Probability Distributions with Dependence Trees”. IEEE Trans. Inf. Theory, 14, 462-467.
  28. Bewick, V., Cheek, L., and Ball, J. (2004) “Statistics review 13: receiver operating characteristic curves”. Crit. Care, 8, 508-512.
  29. Braga-Neto, U. and Dougherty, E. (2005)“Exact performance of error estimators for discrete classifiers”. Pattern Recognit., 38, 1799-1814.
  30. Ambrosie, C. and McLachlan, G. J. (2002) “Selection bias in gene extraction on the basis of microarray geneexpression data”. Proc. Natl. Acad. Sci. U.S.A., 99, 6562- 6566.
  31. Pines, J. M. and Everett, W. W. (2008) “Evidence-Based Emergency Care: Diagnostic Testing and Clinical Decision Rules”. In Blackwell.
  32. Zollanvari, A., Huynh, K., Thomas, J., Wu, A., Deng, M., and Alterovitz, G. (2011) “Quantitative Prediction Based Enrichment for Context-Based Analysis”.
  33. Harris, M. A., Clark, J., Ireland,A., Lomax,J., Ashburner, M., Foulger,R., Eilbeck, K., Lewis,S., Marshall, B., Mungall, C., et al. (2004) “The Gene Ontology (GO) database and informatics resource”. Nucleic Acids Res., 32, D258-261.
  34. Kanehisa, M. and Goto, S.(2000) “KEGG: Kyoto Encyclopedia of Genes and Genomes”. Nucleic Acid Res., 28, 27-30.
  35. Watford, W. T., Hissong, B. D., Bream, J. H., Kanno,Y., Muul, L., and O'Shea, J. J. (2004) “Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4”. In Immunol. Rev., 202, 139-156.9.
  36. Takizawa, T., Meaburn, K. J., and Misteli, T. (2008) “The Meaning of Gene Positioning”. In Cell, 135, 1313- 323.
  37. Gene MCL1 (NCBI): http://www.ncbi.nlm.nih.gov/gene/ 4170
  38. Gene PDE1A (NCBI): http://www.ncbi.nlm.nih.gov/gene/ 5136
  39. Gene ADH5 (NCBI): http://www.ncbi.nlm.nih.gov/gene/ 128
  40. Gene ASPH (NCBI): http://www.ncbi.nlm.nih.gov/gene/ 444
  41. Gene C8ORF44 (NCBI): http://www.ncbi.nlm.nih.gov/ge ne/56260
  42. Gene NTM (NCBI): http://www.ncbi.nlm.nih.gov/ge ne/50863
  43. Ryan M. M., Lockstone H. E., Huffaker S. J., Wayland M. T. et al. “Gene Expression Analysis of Bipolar Disorder Reveals down regulation of the ubiquitin cycle and alterations in synaptic genes”. In Mol Psychiatry 2006 Oct;11(10):965- 78. MIDD: 16894394
Download


Paper Citation


in Harvard Style

Bobba S., Zollanvari A. and Alterovitz G. (2014). Bayesian Prognostic Model for Genomic Discovery in Bipolar Disorder . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 91-98. DOI: 10.5220/0004642100910098


in Bibtex Style

@conference{bioinformatics14,
author={Swetha S. Bobba and Amin Zollanvari and Gil Alterovitz},
title={Bayesian Prognostic Model for Genomic Discovery in Bipolar Disorder},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={91-98},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004642100910098},
isbn={978-989-758-012-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - Bayesian Prognostic Model for Genomic Discovery in Bipolar Disorder
SN - 978-989-758-012-3
AU - Bobba S.
AU - Zollanvari A.
AU - Alterovitz G.
PY - 2014
SP - 91
EP - 98
DO - 10.5220/0004642100910098