Image Analysis through Shifted Orthogonal Polynomial Moments

Rajarshi Biswas, Sambhunath Biswas

Abstract

Image analysis is significant from the standpoint of image description. A well described image has merits in different research areas, e.g., image compression, machine learning, computer vision etc. This paper is an attempt to analyze graylevel images through shifted orthogonal polynomial moments, computed on a discrete disc. This removes the difficulty of computing the moments on an analytic disc. Excellent rotational invariance as well as illumination invariance is observed.

References

  1. Abu-Mostafa, Y. and Psaltis, D. (1984). Recognitive aspects of moment invariants. IEEE Trans Pattern Anal. Machine Intell., 6:698-706.
  2. Bhatia, A. B. and Wolf, E. (1954). On the circular polynomials of zernike and related orthogonal sets. In Proc. Cambridge Philosos. Soc. 50.
  3. Biswas, S. N. and Chaudhuri, B. B. (1985). On the generation of discrete circular objects and their properties. Comput. Vision, Graphics Image Process., 32:158- 170.
  4. H. Ren, Z. Ping, W. B. W. W. and Sheng, Y. (2003). Multidistortion invariant image recognition with radial harmonic fourier moments. J. Opt. Soc. Am. A, 20:631- 637.
  5. H. Shu, L. L. and Coatrieux, J. L. (2007). Momentbased approaches in image. In IEEE Engineering in Medicine and Biology Magazine.
  6. H. Q. Zhu, H. Z. Shu, J. L. L. L. and Coatrieux, J. (2007). Image analysis by discrete orthogonal racah moments. Signal Processing, 87:687-708.
  7. Hu, M. (1962). Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory IT, 8:179-187.
  8. Jan Flusser, T. S. and Zitova, B. (2009). Moments and Moment Invariants in Pattern Recognition. John Wiley and Sons, UK.
  9. Mikolajczyk, K. and Schmid, C. (2004). Scale and affine invariant interest point detectors. International Journal of Computer Vision, 60:63-86.
  10. Prokop, R. and Reeves, A. (1992). A survey of momentbased techniques for unoccluded object representation and recognition. CVGIP: Graphical Models and Image Process., 54:438-460.
  11. P. T. Yap, R. P. and Ong, S. (2003). Image analysis by krawtchouk moments. IEEE Trans. Image Process., 12:1367-1377.
  12. R. Mukundan, S. H. O. and Lee, P. A. (2001). Image analysis by tchebichef moments. IEEE Trans. Image Process., 10:1357-1364.
  13. Reddi, S. (1981). Radial and angular moment invariants for image identification. IEEE Trans Pattern Anal. Machine Intell., 3:240-242.
  14. T. Xia, H.Q. Zhu, H. S. P. H. and Luo, L. (2007). Image description with generalized pseudo-zernike moments. J. Opt. Soc. Am. A, 24:50-59.
  15. Teague, M. (1980). Image analysis via the general theory of moments. J. Opt. Soc. Am., 70:920-930.
  16. Teh, C. and Chin, R. (1988). On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell., 10:496-513.
  17. Yap, P. T. and Raveendran, P. (2004). Image focus measure based on chebyshev moments. In IEE Proc. -Vis. Image Signal Process.
  18. Z. L. Ping, R. W. and Sheng, Y. (2002). Image description with chebyshev-fourier moments. J. Opt. Soc. Am. A, 19:1748-1754.
Download


Paper Citation


in Harvard Style

Biswas R. and Biswas S. (2014). Image Analysis through Shifted Orthogonal Polynomial Moments . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 411-416. DOI: 10.5220/0004648004110416


in Bibtex Style

@conference{visapp14,
author={Rajarshi Biswas and Sambhunath Biswas},
title={Image Analysis through Shifted Orthogonal Polynomial Moments},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={411-416},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004648004110416},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - Image Analysis through Shifted Orthogonal Polynomial Moments
SN - 978-989-758-003-1
AU - Biswas R.
AU - Biswas S.
PY - 2014
SP - 411
EP - 416
DO - 10.5220/0004648004110416