Fine-Grained Provenance of Users’ Interpretations in a Collaborative Visualization Architecture

Aqeel Al-Naser, Masroor Rasheed, Duncan Irving, John Brooke


In this paper, we address the interpretation of seismic imaging datasets from the oil and gas industry—a process that requires expert knowledge to identify features of interest. This is a subjective process as it is based on human expertise and thus it often results in multiple views and interpretations of a feature in a collaborative environment. Managing multi-user and multi-version interpretations, combined with version tracking, is challenging; this is supported by a recent survey that we present in this paper. We address this challenge via a data-centric visualization architecture, which combines the storage of the raw data with the storage of the interpretations produced by the visualization of features by multiple user sessions. Our architecture features a fine-grained data-oriented provenance, which is not available in current methods for visual analysis of seismic data. We present case studies that present the use of our system by geoscientists to illustrate its ability to reproduce users’ inputs and amendments to the interpretations of others and the ability to retrace the history of changes to a visual feature.


  1. Ahrens, J., Brislawn, K., Martin, K., Geveci, B., Law, C., and Papka, M. (2001). Large-scale data visualization using parallel data streaming. IEEE Computer Graphics and Applications, 21(4):34-41.
  2. Al-Naser, A., Rasheed, M., Brooke, J., and Irving, D. (2011). Enabling Visualization of Massive Datasets Through MPP Database Architecture. In Carr, H. and Grimstead, I., editors, Theory and Practice of Computer Graphics, pages 109-112. Eurographics Association.
  3. Al-Naser, A., Rasheed, M., Irving, D., and Brooke, J. (2013a). A Data Centric Approach to Data Provenance in Seismic Imaging Data. In 75th EAGE Conference & Exhibition incorporating SPE EUROPEC, London. EAGE Publications bv.
  4. Al-Naser, A., Rasheed, M., Irving, D., and Brooke, J. (2013b). A Visualization Architecture for Collaborative Analytical and Data Provenance Activities. In Information Visualisation (IV), 2013 17th International Conference on, pages 253-262.
  5. Alvarez, F., Dineen, P., and Nimbalkar, M. (2013). The Studio Environment: Driving Productivity for the E&P Workforce. White paper, Schlumberger.
  6. Bacon, M., Simm, R., and Redshaw, T. (2003). 3-D Seismic Interpretation. Cambridge University Press.
  7. Ballinger, C. (2009). The Teradata Scalability Story. Technical report, Teradata Corporation.
  8. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., and Vo, H. (2005). VisTrails: Enabling Interactive Multiple-View Visualizations. In Visualization, 2005. VIS 05. IEEE, pages 135-142. IEEE.
  9. Biddiscombe, J., Geveci, B., Martin, K., Moreland, K., and Thompson, D. (2007). Time dependent processing in a parallel pipeline architecture. IEEE Transactions on Visualization and Computer Graphics, 13(6):1376- 1383.
  10. BP (2012a). BP Energy Outlook 2030. Technical report, London.
  11. BP (2012b). BP Statistical Review of World Energy June 2012. Technical report.
  12. Brooke, J. M., Marsh, J., Pettifer, S., and Sastry, L. S. (2007). The importance of locality in the visualization of large datasets. Concurrency and Computation: Practice and Experience, 19(2):195-205.
  13. Castanie, L., Levy, B., and Bosquet, F. (2005). VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration. In IEEE Visualization, volume im, pages 247- 254. Ieee.
  14. Gosink, L. J., Anderson, J. C., Bethel, E. W., and Joy, K. I. (2008). Query-driven visualization of time-varying adaptive mesh refinement data. IEEE transactions on visualization and computer graphics, 14(6):1715 -1722.
  15. Hadwiger, M., Ljung, P., Salama, C. R., and Ropinski, T. (2009). Advanced Illumination Techniques for GPU Volume Raycasting. In ACM SIGGRAPH Courses Program, pages 1-166, New York, NY, USA. ACM.
  16. Halliburton-Landmark (2013). GeoProbe Volume Visualization. Pages/GeoProbe.aspx.
  17. Hawtin, S. and Lecore, D. (2011). The business value case for data management - a study. Technical report, CDA & Schlumberger.
  18. Höllt, T., Beyer, J., Gschwantner, F., Muigg, P., Doleisch, H., Heinemann, G., and Hadwiger, M. (2011). Interactive seismic interpretation with piecewise global energy minimization. In Pacific Visualization Symposium (PacificVis), 2011 IEEE, pages 59-66, Hong Kong.
  19. Ikeda, R. and Widom, J. (2009). Data Lineage: A Survey. Technical report, Stanford University.
  20. Jomier, J., Aylward, S. R., Marion, C., Lee, J., and Styner, M. (2009). A digital archiving system and distributed server-side processing of large datasets. In Siddiqui, K. M. and Liu, B. J., editors, Proc. SPIE 7264, Medical Imaging 2009: Advanced PACS-based Imaging Informatics and Therapeutic Applications, volume 7264, pages 726413-726413-8.
  21. Jomier, J., Jourdain, S., and Marion, C. (2011). Remote Visualization of Large Datasets with MIDAS and ParaViewWeb. In Proceedings of the 16th International Conference on 3D Web Technology, pages 147-150, Paris, France. ACM.
  22. Karvounarakis, G., Ives, Z. G., and Tannen, V. (2010). Querying data provenance. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, SIGMOD 7810, pages 951-962, New York, NY, USA. ACM.
  23. Lin, J. C.-R. and Hall, C. (2007). Multiple oil and gas volumetric data visualization with GPU programming. Proceedings of SPIE, 6495:64950U-64950U-8.
  24. Ma, C. and Rokne, J. (2004). 3D Seismic Volume Visualization, volume VI, chapter 13, pages 241-262. Springer Netherlands, Norwell, MA, USA.
  25. Mcreynolds, T. and Hui, S. (1997). Volume Visualization with Texture, chapter 13, pages 144-153. SIGGRAPH.
  26. Moreland, K. (2013). A Survey of Visualization Pipelines. Visualization and Computer Graphics, IEEE Transactions on, 19(3):367-378.
  27. Patel, D., Bruckner, S., and Viola, I. (2010). Seismic volume visualization for horizon extraction. In Proceedings of IEEE Pacific Visualization, volume Vi, pages 73-80, Taipei, Taiwan. IEEE.
  28. Patel, D., Sture, O. y., Hauser, H., Giertsen, C., and Eduard Gröller, M. (2009). Knowledge-assisted visualization of seismic data. Computers & Graphics, 33(5):585- 596.
  29. Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J., Madden, S., and Stonebraker, M. (2009). A comparison of approaches to large-scale data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pages 165-178. ACM.
  30. Plate, J., Holtkaemper, T., and Froehlich, B. (2007). A flexible multi-volume shader framework for arbitrarily intersecting multi-resolution datasets. IEEE transactions on visualization and computer graphics, 13(6):1584-91.
  31. Plate, J., Tirtasana, M., Carmona, R., and Fröhlich, B. (2002). Octreemizer: a hierarchical approach for interactive roaming through very large volumes. In Data Visualisation, pages 53-60. Eurographics Association.
  32. Rahimi, S. K. and Haug, F. S. (2010). Query Optimization. Wiley.
  33. Robein, E. (2010). Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations. EAGE Publications bv.
  34. Scheidegger, C. E., Vo, H., Koop, D., Freire, J., and Silva, C. T. (2007). Querying and creating visualizations by analogy. IEEE transactions on Visualization and Computer Graphics, 13(6):1560-1567.
  35. Schlumberger (2013). Petrel Seismic to Simulation Software. geo/petrel.aspx.
  36. Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A survey of data provenance in e-science. SIGMOD Rec., 34(3):31-36.
  37. Society of Exploration Geophysicists (2002). SEG Y rev 1 Data Exchange Format. Technical Report May.
  38. Stockinger, K., Shalf, J., Wu, K., and Bethel, E. (2005). Query-Driven Visualization of Large Data Sets. In Visualization, 2005. VIS 05. IEEE, pages 167-174. IEEE.
  39. Visualization Sciences Group (2013). Avizo Earth. http: //
  40. Vo, H., Bronson, J., Summa, B., Comba, J., Freire, J., Howe, B., Pascucci, V., and Silva, C. (2011). Parallel Visualization on Large Clusters using Map Reduce. In Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on, pages 81-88. IEEE.
  41. Wu, K. (2005). FastBit: an efficient indexing technology for accelerating data-intensive science. Journal of Physics: Conference Series, 16:556-560.
  42. Wu, K., Ahern, S., Bethel, E. W., Chen, J., Childs, H., Cormier-Michel, E., Geddes, C., Gu, J., Hagen, H., Hamann, B., Koegler, W., Lauret, J., Meredith, J., Messmer, P., Otoo, E., Perevoztchikov, V., Poskanzer, A., Prabhat, Rübel, O., Shoshani, A., Sim, A., Stockinger, K., Weber, G., and Zhang, W.-M. (2009). FastBit: interactively searching massive data. Journal of Physics: Conference Series, 180:012053.
  43. Zhang, S. and Zhao, J. (2010). Feature Aware Multiresolution Animation Models Generation. Journal of Multimedia, 5(6):622-628.

Paper Citation

in Harvard Style

Al-Naser A., Rasheed M., Irving D. and Brooke J. (2014). Fine-Grained Provenance of Users’ Interpretations in a Collaborative Visualization Architecture . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 305-317. DOI: 10.5220/0004650503050317

in Bibtex Style

author={Aqeel Al-Naser and Masroor Rasheed and Duncan Irving and John Brooke},
title={Fine-Grained Provenance of Users’ Interpretations in a Collaborative Visualization Architecture},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},

in EndNote Style

JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - Fine-Grained Provenance of Users’ Interpretations in a Collaborative Visualization Architecture
SN - 978-989-758-005-5
AU - Al-Naser A.
AU - Rasheed M.
AU - Irving D.
AU - Brooke J.
PY - 2014
SP - 305
EP - 317
DO - 10.5220/0004650503050317