Generalized Pythagoras Trees for Visualizing Hierarchies

Fabian Beck, Michael Burch, Tanja Munz, Lorenzo Di Silvestro, Daniel Weiskopf


Pythagoras Trees are fractals that can be used to depict binary hierarchies. But this binary encoding is an obstacle for visualizing hierarchical data such as file systems or phylogenetic trees, which branch into n subhierarchies. Although any hierarchy can be modeled as a binary one by subsequently dividing n-ary branches into a sequence of n - 1 binary branches, we follow a different strategy. In our approach extending Pythagoras Trees to arbitrarily branching trees, we only need a single visual element for an n-ary branch instead of spreading the binary branches along a strand. Each vertex in the hierarchy is visualized as a rectangle sized according to a metric. We analyze several visual parameters such as length, width, order, and color of the nodes against the use of different metrics. The usefulness of our technique is illustrated by two case studies visualizing directory structures and a large phylogenetic tree. We compare our approach with existing tree diagrams and discuss questions of geometry, perception, readability, and aesthetics.


  1. Andrews, K. and Heidegger, H. (1998). Information slices: Visualising and exploring large hierarchies using cascading, semicircular disks. In Proceedings of IEEE Symposium on Information Visualization, pages 9-11.
  2. Balzer, M., Deussen, O., and Lewerentz, C. (2005). Voronoi treemaps for the visualization of software metrics. In Proceedings of Software Visualization, pages 165- 172.
  3. Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G. (1999). Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall.
  4. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. (2010). Genbank. Nucleic Acids Research, 38(suppl 1):D46-D51.
  5. Bosman, A. E. (1957). Het wondere onderzoekingsveld der vlakke meetkunde. Breda, N.V. Uitgeversmaatschappij Parcival.
  6. Burch, M., Konevtsova, N., Heinrich, J., Höferlin, M., and Weiskopf, D. (2011). Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Transactions on Visualization and Computer Graphics, 17(12):2440-2448.
  7. Burch, M., Raschke, M., and Weiskopf, D. (2010). Indented Pixel Tree Plots. In Proceedings of International Symposium on Visual Computing, pages 338-349.
  8. Carrière, S. J. and Kazman, R. (1995). Research report: Interacting with huge hierarchies: beyond cone trees. In Proceedings of Information Visualization, pages 74- 81.
  9. Devroye, L. and Kruszewski, P. (1995). The botanical beauty of random binary trees. In Proceedings of Graph Drawing, pages 166-177.
  10. Eades, P. (1992). Drawing free trees. Bulletin of the Institute for Combinatorics and its Applications, 5:10-36.
  11. Grivet, S., Auber, D., Domenger, J., and Melanc¸on, G. (2004). Bubble tree drawing algorithm. In Proceedings of International Conference on Computer Vision and Graphics, pages 633-641.
  12. Holton, M. (1994). Strands, gravity, and botanical tree imaginery. Computer Graphics Forum, 13(1):57-67.
  13. Jürgensmann, S. and Schulz, H.-J. (2010). A visual survey of tree visualization. IEEE Visweek 2010 Posters.
  14. Kleiberg, E., van de Wetering, H., and van Wijk, J. J. (2001). Botanical visualization of huge hierarchies. In Proceedings of Information Visualization, pages 87- 94.
  15. Koike, H. (1995). Generalized fractal views: A fractal-based method for controlling information display. ACM Transactions on Information Systems, 13(3):305-324.
  16. Koike, H. and Yoshihara, H. (1993). Fractal approaches for visualizing huge hierarchies. In Proceedings of Visual Languages, pages 55-60.
  17. Kruskal, J. and Landwehr, J. (1983). Icicle plots: Better displays for hierarchical clustering. The American Statistician, 37(2):162-168.
  18. Lin, C. C. and Yen, H. C. (2007). On balloon drawings of rooted trees. Graph Algorithms and Applications, 11(2):431-452.
  19. Machado, P. and Cardoso, A. (1998). Computing aesthetics. In Advances in Artificial Intelligence, volume 1515 of Lecture Notes in Computer Science, pages 219-228. Springer Berlin Heidelberg.
  20. Mandelbrot, B. (1982). The Fractal Geometry of Nature. W.H. Freeman and Company. New York.
  21. McGuffin, M. and Robert, J. (2009). Quantifying the spaceefficiency of 2D graphical representations of trees. Information Visualization, 9(2):115-140.
  22. Nocaj, A. and Brandes, U. (2012). Computing Voronoi Treemaps: Faster, simpler, and resolutionindependent. Computer Graphics Forum, 31(3):855- 864.
  23. Peitgen, H.-O. and Saupe, D., editors (1988). Science of Fractal Images. Springer-Verlag.
  24. Reingold, E. and Tilford, J. (1981). Tidier drawings of trees. IEEE Transactions on Software Engineering, 7:223- 228.
  25. Rosindell, J. and Harmon, L. (2012). OneZoom: A fractal explorer for the tree of life. PLOS Biology, 10(10).
  26. Schulz, H.-J. (2011). A tree visualization reference. IEEE Computer Graphics and Applications, 31(6):11-15.
  27. Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on Graphics, 11(1):92-99.
  28. Stasko, J. T. and Zhang, E. (2000). Focus+context display and navigation techniques for enhancing radial, spacefilling hierarchy visualizations. In Proceedings of the IEEE Symposium on Information Visualization, pages 57-65.
  29. Ware, C. (2004). Information Visualization, Second Edition: Perception for Design (Interactive Technologies). Morgan Kaufmann, 2nd edition.
  30. Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt. II. Psychological Research, 4(1):301-350.
  31. Wetherell, C. and Shannon, A. (1979). Tidy drawings of trees. IEEE Transactions on Software Engineering, 5(5):514-520.
  32. Wilson, E. O. (1984). Biophilia. Harvard University Press.
  33. Yang, J., Ward, M. O., Rundensteiner, E. A., and Patro, A. (2003). InterRing: a visual interface for navigating and manipulating hierarchies. Information Visualization, 2(1):16-30.

Paper Citation

in Harvard Style

Beck F., Burch M., Munz T., Di Silvestro L. and Weiskopf D. (2014). Generalized Pythagoras Trees for Visualizing Hierarchies . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 17-28. DOI: 10.5220/0004654500170028

in Bibtex Style

author={Fabian Beck and Michael Burch and Tanja Munz and Lorenzo Di Silvestro and Daniel Weiskopf},
title={Generalized Pythagoras Trees for Visualizing Hierarchies},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},

in EndNote Style

JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - Generalized Pythagoras Trees for Visualizing Hierarchies
SN - 978-989-758-005-5
AU - Beck F.
AU - Burch M.
AU - Munz T.
AU - Di Silvestro L.
AU - Weiskopf D.
PY - 2014
SP - 17
EP - 28
DO - 10.5220/0004654500170028