Extrinsic Parameter Self-Calibration and Nonlinear Filtering for in-Vehicle Stereo Vision Systems at Urban Environments

Basam Musleh, David Martin, Jose Maria Armingol, Arturo De La Escalera

Abstract

Present work analyses the continuous self-calibration of extrinsic parameters of a stereo vision system for safe visual odometry applications in vehicles at urban environments. The calibration method determines the extrinsic parameters of a stereo vision system based on knowing the geometry of the ground in front of the cameras. The slight changes of the road profile cause variations in the extrinsic parameters of stereo rig that are necessary to filter and maintain between tolerance values. Then, height, pitch and roll parameters are filtered, to eliminate pose outliers of the stereo rig that appear when a vehicle is maneuvering. The reliable approach at urban environment is firstly composed of the calculation of the road profile slope, the theoretical horizon, and the slope of the straight line in the free map. Secondly, the nonlinear filtering is applied using Unscented Kalman Filter to improve the estimation of height, pitch and roll parameters.

References

  1. Broggi, A., Bertozzi, M., Fascioli, A., 2001. Selfcalibration of a stereo vision system for automotive applications. In Proc. IEEE International Conference on Robotics and Automation, vol. 4, pp. 3698-3703.
  2. Collado, J. M., Hilario, C., de la Escalera, A., Armingol, J.M., 2006. Self-calibration of an on-board stereovision system for driver assistance systems. In Proc. IEEE Intell. Veh. Symposium, pp. 156-162.
  3. Crassidis, J. L., Markley, F. L., 2003. Unscented Filtering for Spacecraft Attitude Estimation. AIAA J. Guid. Control. Dyn., vol. 26, pp. 536-542.
  4. Dornaika, F., Sappa, A. D., 2009. A featureless and stochastic approach to on-board stereo vision system pose. Image and Vision Computing, vol. 27, pp. 1382- 1393.
  5. Fischler, M. A., Bolles, R. C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Com. of the ACM, no. 6, 381-395.
  6. Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proc. Computer Vision and Pattern Recognition (CVPR), USA, pp. 3354-3361.
  7. Hold, S., Nunn, C., Kummert, A., Muller-Schneiders, S., 2009. Efficient and robust extrinsic camera calibration procedure for lane departure warning. In Proc. IEEE Intell. Veh. Symposium, pp. 382-387.
  8. Hold, S., Gormer, S., Kummert, A., Meuter, M., MullerSchneiders, S., 2009. A novel approach for the online initial calibration of extrinsic parameters for a carmounted camera. In Proc. 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, pp. 420-425.
  9. Hu, Z., Lamosa, F., Uchimura, K., 2005. A complete uvdisparity study for stereovision based 3d driving environment analysis. In Proc. Fifth Int. Conf. on 3-D Digital Imaging and Modeling, pp. 204-211.
  10. Julier, S. J., Uhlmann, J.K., 2004. Unscented Filtering and Nonlinear Estimation. Proceedings of the IEEE, vol.92, pp. 401 - 422.
  11. Labayrade, R., Aubert, D., Tarel, J.P., 2002. Real time obstacle detection in stereovision on non flat road geometry through v-disparity representation. In Proc. IEEE Intell. Veh. Sym., pp. 646-651.
  12. Labayrade, R., Aubert, D., 2003. A single framework for vehicle roll, pitch, yaw estimation and obstacles detection by stereovision. In Proc. IEEE Intelligent Vehicles Symposium, pp. 31-36.
  13. Li, S., Hai, Y., 2011. Easy calibration of a blind-spot-free fisheye camera system using a scene of a parking space. IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 232-242.
  14. Li, W., Leung, H., 2003. Constrained Unscented Kalman Filter Based Fusion of GPS/INS/Digital Map for Vehicle Localization. In Proc. IEEE 2003 International Conference on Intelligent Transportation Systems, Shanghai, China, 12-15, vol. 2, pp. 1362-1367.
  15. Llorca, D. F., Sotelo, M. A., Hellín, A. M., Orellana, A., Gavilán, M., Daza, I. G., Lorente, A. G., 2012. Stereo regions-of-interest selection for pedestrian protection: A survey. Transportation Research Part C, vol. 25, pp. 226-237.
  16. Marita, T., Oniga, F., Nedevschi, S., Graf, T., Schmidt, R., 2006. Camera calibration method for far range stereovision sensors used in vehicles. In Proc. IEEE Intelligent Vehicles Symposium, pp. 356-363.
  17. Martí, E. D., Martín, D., García, J., de la Escalera, A., Molina, J.M., Armingol, J. M., 2012. Context-aided Sensor Fusion for Enhanced Urban Navigation. Sensors, vol. 12, no. 12, pp. 16802-16837.
  18. Musleh, B., de la Escalera, A., Armingol, J. M., 2012. U-v disparity analysis in urban environments. In Proc. Computer Aided Systems Theory EUROCAST 2011, vol. 6928 of LNCS, pp. 426-432.
  19. Musleh, B., Martin, D., de la Escalera, A., Armingol, J. M., 2012. Visual Ego Motion Estimation in Urban Environments based on U-V Disparity. In Proc. 2012 IEEE Intelligent Vehicles Symposium, Alcalá de Henares, Spain, pp. 444-449.
  20. Scharstein, D., Szeliski, R., 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International journal of computer vision, vol. 47, no. 1, pp. 7-42.
  21. Turnip, A., Nguyen, L.H., Hong, K.-S., 2009. Detection of Critical Driving Situations Based on Wheel-Ground Contact Normal Forces. In Proc. ICROS-SICE Inter. Joint Conf., Japan, pp. 2519-2524.
  22. Van der Merwe, R., Wan, E.A., Julier, S.I., 2004. Sigma Point Kalman Filters for Nonlinear Estimation and Sensor Fusion: Applications to Integrated Navigation. In Proc. AIAA Guidance, Navigation and Control Conf., Providence, RI, USA, pp. 1735-1764.
  23. Wagner, J. F., 2005. GNSS/INS integration: still an attractive candidate for automatic landing systems?. GPS Sol., vol. 9, pp. 179-193.
  24. Wang, Q., Zhang, Q., Rovira-Mas, F., 2010. Autocalibration method to determine camera pose for stereovision-based off-road vehicle navigation. Environ. control in biol., vol. 48, no. 2, pp. 59-72.
  25. Zhou, J., Knedlik, S., Loffeld, O., 2010. INS/GPS Tightlycoupled Integration using Adaptive Unscented Particle Filter. J. Navig., vol. 63, 491-511.
Download


Paper Citation


in Harvard Style

Musleh B., Martin D., Armingol J. and De La Escalera A. (2014). Extrinsic Parameter Self-Calibration and Nonlinear Filtering for in-Vehicle Stereo Vision Systems at Urban Environments . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 427-434. DOI: 10.5220/0004655804270434


in Bibtex Style

@conference{visapp14,
author={Basam Musleh and David Martin and Jose Maria Armingol and Arturo De La Escalera},
title={Extrinsic Parameter Self-Calibration and Nonlinear Filtering for in-Vehicle Stereo Vision Systems at Urban Environments},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={427-434},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004655804270434},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Extrinsic Parameter Self-Calibration and Nonlinear Filtering for in-Vehicle Stereo Vision Systems at Urban Environments
SN - 978-989-758-009-3
AU - Musleh B.
AU - Martin D.
AU - Armingol J.
AU - De La Escalera A.
PY - 2014
SP - 427
EP - 434
DO - 10.5220/0004655804270434