Low-Discrepancy Distribution of Points on Arbitrary Polygonal 3D-surfaces

Alena Bulyha, Wolfgang Herzner, Alena Bulyha, Wolfgang Herzner, Markus Murschitz, Oliver Zendel


This paper presents a technique for automatic distribution of points on 3D-surfaces that are defined as meshes of polygons (usually triangles) such that the distribution has a low discrepancy. The work is motivated by the quest for representing arbitrary 3D-objects by a minimal number of surface points such that different views and arbitrary occlusions of objects can be effectively distinguished by simply using the visible surface points. The approach exploits low-discrepancy sequences on the unit square such as those proposed by Hammersley or Halton.


  1. Alexander, J. R., Beck, J, Chen, W. L., 2004. Geometric discrepancy theory and uniform distribution. In Handbook of Discrete and Computational Geometry, Boca Raton: Chapman & Hall/CRC, 2nd Edition.
  2. Berg, M., 1996. Computing half-plane and strip discrepancy of planar point sets. Comput. Geom. 6: 69-83.
  3. Chen, W. W. L., Travaglini, G., 2007. Discrepancy with respect to convex polygons. J. Complexity. 23(4- 6):662-672.
  4. Cheng, J., Druzdzel, M. J., 2000. Computational investigation of low-discrepancy sequences in simulation algorithms for Bayesian networks. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. pp. 72-81.
  5. Cui, J., Freeden, W., 1997. Equidistribution on the sphere. SIAM J. Sci. Comput. 18(2):595-609.
  6. Dachsbacher, C., Stamminger, M., 2006. Splatting indirect illumination. In Proceedings of the 2006 symposium on Interactive 3D graphics and games (I3D 7806). pp. 93-100.
  7. Grabner, P.J., Hellekalek, P., Liardet, P., 2012. The dynamical point of view of low-discrepancy sequences. Uniform Distribution Theory. 7(1):11-70.
  8. Halton, J. H., 1960. On the efficiency of certain quasirandom sequences of points in evaluating multidimensional integrals. Numer. Math.. 2:84-90.
  9. Hammersley, J. M., 1960. Monte Carlo methods for solving multivariable problems. Ann. New York Acad. Sci.. 86:844-874.
  10. Hanson, K. M., 2003. Quasi-Monte Carlo: half-toning in high dimensions?. In Proceedings SPIE 5016. pp.161- 172.
  11. Hofer, R., Pirsic, G., 2011. An explicit construction of finite-row digital (0,s)-sequences. Uniform Distribution Theory. 6:13-33.
  12. Matousek, J, 1999. Geometric Discrepancy - An Illustrated Guide. Algorithms and combinatorics series, Vol.18; Springer, Berlin Heidelberg.
  13. Niederreiter, H., Chao, X, 1995. Low-discrepancy sequences obtained from algebraic function fields over finite fields. Acta Arithmetica, 72:281-298.
  14. Pillards, T., Cools, R., 2005. Transforming lowdiscrepancy sequences from a cube to a simplex. J. Comput. Appl. Math.. 174(1): 29-42.
  15. Quinn, J. A., Langbein, F. C., Martin, R. R., 2007. Lowdiscrepancy point sampling of meshes for rendering. In: Symp. on Point-Based Graphics 2007. pp. 19-28.
  16. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M., 1994. Minimal discrete energy on the sphere. Math. Res. Lett.. 1:647- 662.
  17. Rovira, J., Wonka, P., Castro, F., Sbert, M., 2005. Point sampling with uniformly distributed lines. Eurographics Symp. Point-Based Graphics. pp. 109-118.
  18. Shamir A., 2008. A Survey on Mesh Segmentation Techniques. Computer Graphics Forum. 27( 6): 1539- 1556.
  19. Sobol, I. M., 1967. On the distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Computational Mathematics and Mathematical Physics, 7(4):86-112.
  20. Wand, M., Stra├čer, W., 2003. Multi-resolution pointsample raytracing. In: Graphics Interface 2003 Conference Proceedings.
  21. Wong, T.-T., Luk, W.-S., Heng, P.-A., 1997. Sampling with Hammersley and Halton points. Journal of Graphics Tools. 2(2):9-24.

Paper Citation

in Bibtex Style

author={Alena Bulyha and Wolfgang Herzner and Wolfgang Herzner and Alena Bulyha and Markus Murschitz and Oliver Zendel},
title={Low-Discrepancy Distribution of Points on Arbitrary Polygonal 3D-surfaces},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},

in Harvard Style

Bulyha A., Herzner W., Herzner W., Bulyha A., Murschitz M. and Zendel O. (2014). Low-Discrepancy Distribution of Points on Arbitrary Polygonal 3D-surfaces . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 79-87. DOI: 10.5220/0004659900790087

in EndNote Style

JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - Low-Discrepancy Distribution of Points on Arbitrary Polygonal 3D-surfaces
SN - 978-989-758-002-4
AU - Bulyha A.
AU - Herzner W.
AU - Herzner W.
AU - Bulyha A.
AU - Murschitz M.
AU - Zendel O.
PY - 2014
SP - 79
EP - 87
DO - 10.5220/0004659900790087