Analyzing Intrinsic Motion Textures Created from Naturalistic Video Captures

Angus Graeme Forbes, Andrew Predoehl, Christopher Jette

Abstract

This paper presents an initial exploration of the plausibility of incorporating subtle motions as a useful modality for encoding (or augmenting the encoding of) data for information visualization tasks. Psychophysics research indicates that the human visual system is highly responsive to identifying and differentiating even the subtlest motions intrinsic to an object. We examine aspects of this intrinsic motion, whereby an object stays in one place while a texture applied to that object changes in subtle but perceptible ways. We hypothesize that the use of subtle intrinsic motions (as opposed to more obvious extrinsic motion) will avoid the clutter and visual fatigue that often discourages visualization designers from incorporating motion. Using transformed video captures of naturalistic motions gathered from the world, we conduct a preliminary user study that attempts ascertains the minimum amount of motion that is easily perceptible to a viewer. We introduce metrics which allow us to categorize these motions in terms of flicker (local amplitude and frequency), flutter (global amplitude and frequency), and average maximum contrast between a pixel and its immediate neighbors. Using these metrics (and a few others), we identify plausible ranges of motion that might be appropriate for visualization tasks, either on their own or in conjunction with other modalities (such as color or shape), without increasing visual fatigue. Based on an analysis of these initial preliminary results, we propose that the use of what we term “intrinsic motion textures” may be a promising modality appropriate for a range of visualization tasks.

References

  1. Bartram, L. and Ware, C. (2002). Filtering and brushing with motion. Information Visualization, 1(1):66-79.
  2. Bartram, L., Ware, C., and Calvert, T. (2003). Moticons: detection, distraction and task. International Journal of Human-Computer Studies, 58(5):515-545.
  3. Bertin, J. (2010). Semiology of graphics: diagrams, networks, maps, pages 79-81. Esri Press.
  4. Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3: Datadriven documents. IEEE Transactions on Visualization and Computer Graphics (TVCG), 17(12):2301- 2309.
  5. Byelas, H. and Telea, A. (2009). Visualizing multivariate attributes on software diagrams. In Software Maintenance and Reengineering, 2009. CSMR 7809. 13th European Conference on, pages 335 -338.
  6. Chalupa, L., Werner, J., and of Technology, M. I. (2004). The visual neurosciences. MIT Press.
  7. Chuang, Y., Goldman, D., Zheng, K., Curless, B., Salesin, D., and Szeliski, R. (2005). Animating pictures with stochastic motion textures. ACM Transactions on Graphics (TOG), 24(3):853-860.
  8. Conti, G., Ahamad, M., and Stasko, J. (2005). Attacking information visualization system usability overloading and deceiving the human. In Proceedings of the 2005 symposium on Usable privacy and security, pages 89- 100. ACM.
  9. Doretto, G., Chiuso, A., Wu, Y. N., and Soatto, S. (2003). Dynamic textures. International Journal of Computer Vision, 51:91-109. 10.1023/A:1021669406132.
  10. Emrith, K., Chantler, M., Green, P., Maloney, L., and Clarke, A. (2010). Measuring perceived differences in surface texture due to changes in higher order statistics. JOSA A, 27(5):1232-1244.
  11. Forbes, A. G., Höllerer, T., and Legrady, G. (2010). Behaviorism: A framework for dynamic data visualization. IEEE Transactions on Visualization and Computer Graphics (TVCG), 16(6):1164-1171.
  12. Forbes, A. G., Höllerer, T., and Legrady, G. (2013). Generative fluid profiles for interactive media arts projects. In Proceedings of the International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging (CAe), pages 123-129, Anaheim, California.
  13. Forbes, A. G. and Odai, K. (2012). Iterative synaesthetic composing with multimedia signals. In Proceedings of the International Computer Music Conference (ICMC), pages 573-578, Ljubjiana, Slovenia.
  14. Heer, J. and Bostock, M. (2010). Crowdsourcing graphical perception: using mechanical turk to assess visualization design. In ACM Human Factors in Computing Systems (CHI), pages 203-212. ACM.
  15. Holten, D., Isenberg, P., van Wijk, J., and Fekete, J. (2011). An extended evaluation of the readability of tapered, animated, and textured directed-edge representations in node-link graphs. In Pacific Visualization Symposium (PacificVis), 2011 IEEE, pages 195 -202.
  16. House, D., Bair, A., and Ware, C. (2006). An approach to the perceptual optimization of complex visualizations. IEEE Transactions on Visualization and Computer Graphics (TVCG), 12(4):509-521.
  17. Huber, D. and Healey, C. (2005). Visualizing data with motion. In Proceedings of IEEE Visualization (VIS), pages 527-534.
  18. Interrante, V. (2000). Harnessing natural textures for multivariate visualization. Computer Graphics and Applications, IEEE, 20(6):6 -11.
  19. Interrante, V. and Kim, S. (2001). Investigating the effect of texture orientation on the perception of 3d shape. In Human Vision and Electronic Imaging VI, volume 4299, pages 330-339.
  20. Kim, S., Hagh-Shenas, H., and Interrante, V. (2004). Conveying shape with texture: Experimental investigations of texture's effects on shape categorization judgments. IEEE Transactions on Visualization and Computer Graphics (TVCG), 10(4):471-483.
  21. Kujala, J. and Lukka, T. (2003). Rendering recognizably unique textures. In Information Visualization, 2003. IV 2003. Proceedings. Seventh International Conference on, pages 396-405. IEEE.
  22. Lai, C. and Wu, J. (2007). Temporal texture synthesis by patch-based sampling and morphing interpolation. Computer Animation and Virtual Worlds, 18(4- 5):415-428.
  23. Langer, M. S. and Mann, R. (2003). Optical snow. International Journal of Computer Vision, 55(1):55-71.
  24. Lockyer, M., Bartram, L., and Riecke, B. (2011). Simple motion textures for ambient affect. In Proceedings of the International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging, pages 89-96. ACM.
  25. Lu, Z. and Sperling, G. (2001). Three-systems theory of human visual motion perception: review and update. JOSA A, 18(9):2331-2370.
  26. Lum, E., Stompel, A., and Ma, K. (2003). Using motion to illustrate static 3d shape-kinetic visualization. IEEE Transactions on Visualization and Computer Graphics (TVCG), 9(2):115-126.
  27. Nishida, S., Ledgeway, T., and Edwards, M. (1997). Dual multiple-scale processing for motion in the human visual system. Vision research, 37(19):2685-2698.
  28. Okabe, M., Anjyor, K., and Onai, R. (2011). Creating fluid animation from a single image using video database. In Computer Graphics Forum, volume 30, pages 1973-1982. Wiley Online Library.
  29. Ruiters, R., Schnabel, R., and Klein, R. (2010). Patchbased texture interpolation. Computer Graphics Forum, 29(4):1421-1429.
  30. Van Wijk, J. (2002). Image based flow visualization. ACM Transactions on Graphics (TOG), 21(3):745-754.
  31. Ware, C. (2004). Information visualization: Perception for design, volume 22. Morgan Kaufmann.
  32. Ware, C. and Bobrow, R. (2004). Motion to support rapid interactive queries on node-link diagrams. ACM Transactions on Applied Perception (TAP), 1(1):3-18.
  33. Ware, C. and Knight, W. (1995). Using visual texture for information display. ACM Transactions on Graphics (TOG), 14(1):3-20.
Download


Paper Citation


in Harvard Style

Graeme Forbes A., Jette C. and Predoehl A. (2014). Analyzing Intrinsic Motion Textures Created from Naturalistic Video Captures . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 107-113. DOI: 10.5220/0004660401070113


in Bibtex Style

@conference{ivapp14,
author={Angus Graeme Forbes and Christopher Jette and Andrew Predoehl},
title={Analyzing Intrinsic Motion Textures Created from Naturalistic Video Captures},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},
year={2014},
pages={107-113},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004660401070113},
isbn={978-989-758-005-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - Analyzing Intrinsic Motion Textures Created from Naturalistic Video Captures
SN - 978-989-758-005-5
AU - Graeme Forbes A.
AU - Jette C.
AU - Predoehl A.
PY - 2014
SP - 107
EP - 113
DO - 10.5220/0004660401070113