A Robust, Real-time Ground Change Detector for a “Smart” Walker

Viviana Weiss, Séverine Cloix, Guido Bologna, David Hasler, Thierry Pun

Abstract

Nowadays, there are many different types of mobility aids for elderly people. Nevertheless, these devices may lead to accidents, depending on the terrain where they are being used. In this paper, we present a robust ground change detector that will warn the user of potentially risky situations. Specifically, we propose a robust classification algorithm to detect ground changes based on colour histograms and texture descriptors. In our design, we compare the current frame and the average of the k previous frames using different colour systems and Local Edge Patterns. To assess the performance of our algorithm, we evaluated different Artificial Neural Networks architectures. The best results were obtained by representing in the input neurons measures related to Histogram Intersections, Kolmogorov-Smirnov distance, Cumulative Integrals and Earth mover’s distance. Under real environmental conditions our results indicated that our proposed detector can accurately distinguish the grounds changes in real-time.

References

  1. Cloix, S., Weiss, V., Bologna, G., Pun, T., and Hasler, D. (2013). Object detection and classification using sparse 3d information for a smart walker. Poster Session in Swiss Vision Day 2013 SVD'13, Zurich, Switzerland.
  2. Dubowsky, S., Genot, F., Godding, S., Kozono, H., Skwersky, A., Yu, H., and Yu, L. S. (2000). Pamm - a robotic aid to the elderly for mobility assistance and monitoring: a ”helping-hand”; for the elderly. In Robotics and Automation, 2000. Proceedings. ICRA 7800. IEEE International Conference on, volume 1, pages 570-576.
  3. Frizera, A., Ceres, R., Pons, J. L., Abellanas, A., and Raya, R. (2008). The smart walkers as geriatric assistive device. the simbiosis purpose. In Gerontechnology, volume 7, page 108.
  4. Kang, Y. and Akihiro, S. (2013). Texton clustering for local classification using scene-context scale. In Frontiers of Computer Vision, (FCV), 2013 19th Korea-Japan Joint Workshop on, pages 26-30.
  5. Kumar, P. and Gupta, V. (2012). Learning based obstacle detection for textural path. In International Journal of Emerging Technology and Advanced Engineering, volume 2, pages 436-439.
  6. Li, X.-Z., Williams, S., Lee, G., and Deng, M. (2012). Computer-aided mammography classification of malignant mass regions and normal regions based on novel texton features. In Control Automation Robotics Vision (ICARCV), 2012 12th International Conference on, pages 1431-1436.
  7. Liao, S., Law, M., and Chung, A. (2009). Dominant local binary patterns for texture classification. In Image Processing, IEEE Transactions on, volume 18, pages 1107-1118.
  8. Lu, X. and Manduchi, R. (2005). Detection and localization of curbs and stairways using stereo vision. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages 4648- 4654.
  9. Ojala, T., Pietikainen, M., and Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. In Pattern Recognition, volume 29, pages 51 - 59.
  10. Penatti, O. A., Valle, E., and da S. Torres, R. (2012). Comparative study of global color and texture descriptors for web image retrieval. In Journal of Visual Communication and Image Representation, volume 23, pages 359 - 380.
  11. Pietikinen, M., Nurmela, T., Menp, T., and Turtinen, M. (2004). View-based recognition of real-world textures. In Pattern Recognition, volume 37, pages 313 - 323.
  12. Puzicha, J., Buhmann, J., Rubner, Y., and Tomasi, C. (1999). Empirical evaluation of dissimilarity measures for color and texture. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 2, pages 1165-1172.
  13. Rentschler, A. J., Simpson, R., Cooper, R. A., and Boninger, M. L. (2008). Clinical evaluation of guido robotic walker. In Journal of rehabilitation research and development, volume 45, pages 1281-1293.
  14. Sung, G.-Y., Kwak, D.-M., and Lyou, J. (2010). Neural network based terrain classification using wavelet features. In Journal of Intelligent & Robotic Systems, volume 59, pages 269-281. Springer.
  15. Trombetti, A. et al. (2009). Prévention de la chute: un enjeu de taille dans la stratégie visant à prévenir les fractures chez le sujet aˆgé. In Ostéoporose, volume 207, pages 1318-1324. Médecine et Hygiène.
  16. United Nations (2012). Population ageing and development 2012. Available at http://www.un.org/en/ development/desa/population/publications/pdf/ageing/ 2012PopAgeingandDev WallChart.pdf.
  17. Varma, M. and Zisserman, A. (2003). Texture classification: Are filter banks necessary? In Computer vision and pattern recognition, 2003. Proceedings. 2003 IEEE computer society conference on, volume 2, pages 691-698. IEEE.
  18. Viet, C. N. and Marshall, I. (2009). An efficient obstacle detection algorithm using colour and texture. In Proceedings of World Academy of Science Engineering and Technology, volume 60, pages 123-128.
  19. Weiss, V., Cloix, S., Bologna, G., Pun, T., and Hasler, D. (2013). A ground change detection algorithm using colour and texture for a smart walker. Poster Session in Swiss Vision Day 2013 SVD'13, Zurich, Switzerland.
  20. Yang, B. and Chen, S. (2013). A comparative study on local binary pattern (lbp) based face recognition: fLBPg histogram versus fLBPg image. In Neurocomputing, volume 120, pages 365 - 379.
  21. Yao, C.-H. and Chen, S.-Y. (2003). Retrieval of translated, rotated and scaled color textures. In Pattern Recognition, volume 36, pages 913 - 929.
Download


Paper Citation


in Harvard Style

Weiss V., Cloix S., Bologna G., Hasler D. and Pun T. (2014). A Robust, Real-time Ground Change Detector for a “Smart” Walker . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 305-312. DOI: 10.5220/0004665703050312


in Bibtex Style

@conference{visapp14,
author={Viviana Weiss and Séverine Cloix and Guido Bologna and David Hasler and Thierry Pun},
title={A Robust, Real-time Ground Change Detector for a “Smart” Walker},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={305-312},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004665703050312},
isbn={978-989-758-004-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - A Robust, Real-time Ground Change Detector for a “Smart” Walker
SN - 978-989-758-004-8
AU - Weiss V.
AU - Cloix S.
AU - Bologna G.
AU - Hasler D.
AU - Pun T.
PY - 2014
SP - 305
EP - 312
DO - 10.5220/0004665703050312