Sensors and Features Selection for Robust Gas Concentration Evaluation

D. Ahmadou, E. Losson, M. Siadat, M. Lumbreras

Abstract

This paper seeks to highlight the importance of the knowledge of metal oxide gas sensor behaviour before conceiving an electronic nose for a dedicated application. Therefore, a depth study of sensor response properties is needed for the selection of the more appropriate sensors via optimized measurement conditions and extracted features. Especially for continuous gas evaluation, the most important aspects to consider are the measurement time and the drift of the gas sensors. In this work, for fast recognition of pine oil vapour dilutions, the performance of two features are shown: the maximum of the derivative curve (Peak), an unusual feature which needs a very short gas exposure time, and the sensor amplitude voltage (Vs-V0) obtained at the end of the gas exposition phase. The performance of the new feature Peak, validated by Principal Component Analysis results, leads us to work with the shortest gas exposition and sensor regeneration times, and allows us to choose the best sensors according to our application.

References

  1. Berna, A. Z., Anderson A. R., Trowell S. C., 2009. BioBenchmarking of Electronic Nose Sensors. PLoS ONE, 4(7): e6406;
  2. [Online]; doi: 10.1371/journal.pone.0006406.
  3. Boilot, P., Hines, E. L., Gongora, M. A., Folland, R. S., 2002. Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. In Sensors and Actuators B, 88, 80-88.
  4. Branca, A., Simonian, P., Ferrante, M., Novas, E., Martin Negri R., 2003. Electronic based discrimination of a perfumery compound in a fragrance. In Sensors and Actuators B, 92, 222-227.
  5. Cho, J. H., Kim, Y. W., Na, K. J., Jeon G. J., 2008. Wireless electronic nose system for real-time quantitative analysis of gas mixtures using micro-gas sensor array and neuro-fuzzy network. In Sensors and Actuators B, 134, 104-111.
  6. Delpha, C., Siadat, M., Lumbreras, M., 2001. An electronic nose using time reduced modelling parameters for a reliable discrimination of Forane 134a. In Sensors and Actuators B, 77, 517-524.
  7. Distante, C., Leo, M., Siciliano, P., Persaud, K.C., 2002. On the study of feature extraction methods for an electronic nose. In Sensors and Actuators B, 87, 274- 288.
  8. Falasconi, M., Pardo,M., Sberveglieri, G., Ricco, I., Bresciani, A., 2005. The novel EOS835 electronic nose and data analysis for evaluating coffee ripening. In Sensors and Actuators B, 110, 73-80.
  9. Gualdron O., Llobet E., Brezmes J., Vilanova X., Correig, X., 2004. Fast variable selection for gas sensing applications. In Sensors, 2004. Proceeding of IEEE, 2, 892-895.
  10. Gutierrez-Osuna R., 2002. Pattern analysis for machine olfaction: A review. In IEEE Sensor Journal, 2, 189- 202.
  11. Ionescu, R., Vancu, A., Tomescu, A., 2000. Timedependent humidity calibration for drift corrections in electronic noses equipped with SnO2 gas sensors. In Sensors and Actuators B, 69, 283-286.
  12. Jolliffe, I.T., 2002. Principal Component Analysis, Second edition. New York: Springer.
  13. Llobet, E., Ionescu, R., Al-Khalifa, S., Brezmes, J., Vilanova, X., Correig, X., Barsan, N., Gardner, J.W., 2002. Multicomponent gas mixture analysis using a single tin oxide sensor and dynamic pattern recognition. In Sensors Journal, IEEE, 1 (3), 207-213.
  14. Martin Negri R. and Reich S., 2001. Identification of pollutant gases and its concentrations with a multisensory array. In Sensors and Actuators B, 75, 172-178.
  15. Martinelli, E., Falconia, C., D'Amico A., Di Natale, C., 2003. Feature Extraction of chemical sensors in phase space. In Sensors and Actuators B, 95, 132-139.
  16. Pardo, M. and Sberveglieri. G., 2007. Comparing the performance of different features in sensor arrays. In Sensors and Actuators B, 123, 437-443.
  17. Paulsson, N., Larsson, E., Winquist, F., 2000. Extraction and selection of parameters for evaluation of breath alcohol measurement with an electronic nose. In Sensors and Actuators B, 84, 187-197.
  18. Roussel, S., Forberg, G., Grenier P., Bellon-Maurel, V., 1999. Optimisation of electronic nose measurements. partII : Influence of experimental parameters. In Journal of Food Engineering, 39, 9-15.
  19. Sambemana, H., Siadat, M., Lumbreras, M., 2010. Gas sensing evaluation for the quantification of natural oil diffusion. In Chemical Engineering Transaction, 23, 177-183.
  20. Savitzky, A. and Golay, M.J.E., 1967. Smoothing and Differentiation of Data by Simplified Least SquaresProcedures. In Anal. Chem., 36 (8), 1627- 1639.
  21. Sysoev, V. V., Goschnick, J., Schneider, T., Strelcov, E., Kolmakov, A., 2007. A gradient microarray electronic based on percolating SnO2 nanowire sensing elements. In Nano letters, 7 (10), 3182-3188.
  22. Szczurek, A. and Maciejewska, A., 2012. Gas Sensor Array with Broad Applicability, Sensor Array, Prof. Wuqiang Yang (Ed.), ISBN: 978-953-51-0613-5, InTech. Available from: http://www.intechopen.com/ books/sensor-array/gas-sensor-array-with-broadapplicability.
  23. Zhang, S., Xie, C., Zeng, D., Zhang, Q., Li, H., Bi, Z., 2007. A feature extraction method and a sampling system for fast recognition of flammable liquids with a portable E-nose. In Sensors and Actuators B, 124, 437-443.
  24. Zhang, H. and Wang, J., 2007. Detection of age and insect damage incurred by wheat, with an electronic nose. In Journal of Stored Products Research, 43, 489-495.
Download


Paper Citation


in Harvard Style

Ahmadou D., Losson E., Siadat M. and Lumbreras M. (2014). Sensors and Features Selection for Robust Gas Concentration Evaluation . In Proceedings of the 3rd International Conference on Sensor Networks - Volume 1: SENSORNETS, ISBN 978-989-758-001-7, pages 237-243. DOI: 10.5220/0004670002370243


in Bibtex Style

@conference{sensornets14,
author={D. Ahmadou and E. Losson and M. Siadat and M. Lumbreras},
title={Sensors and Features Selection for Robust Gas Concentration Evaluation},
booktitle={Proceedings of the 3rd International Conference on Sensor Networks - Volume 1: SENSORNETS,},
year={2014},
pages={237-243},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004670002370243},
isbn={978-989-758-001-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Sensor Networks - Volume 1: SENSORNETS,
TI - Sensors and Features Selection for Robust Gas Concentration Evaluation
SN - 978-989-758-001-7
AU - Ahmadou D.
AU - Losson E.
AU - Siadat M.
AU - Lumbreras M.
PY - 2014
SP - 237
EP - 243
DO - 10.5220/0004670002370243