MORPHO-Map - A New Way to Model Animation of Topological Transformations

Annie Luciani, Ali Allaoui, Nicolas Castagné, Emmanuelle Darles, Xavier Skapin, Philippe Meseure

Abstract

Animation of topological transformations, such as fractures, cracks, tears, crumbles or fragmentations, is a new challenge in Computer Graphics and Animation. We propose a new way to model and animate topological changes, allowing the programmer to design any type of topological changes and animation mapping. This model is based on organizing the complex modeling activity into three clearly defined simpler sub-activities: 1) point-based animation, which enables a wide variety of possible temporal phenomena; 2) topological-based modeling, which makes it possible to manage a wide variety of shape-independent topologies and topological transformations; 3) free, non predetermined, association between both, and 4) final output of an animated geometrical model exhibiting any complex behavior. We experimented the proposed method by modeling tearing effects on deformable garments, on rifts and crack effects on 3D objects, and finally by modeling imaginary and paradoxical topological transformations associated with realistic Physics-based animation. Besides improving the consistency and the robustness of the modeling process of such complex phenomena, our aim is also to offer a user-centered programming environment to the Computer Graphics and Animation programmers and designers, to enlarge their modeling and experimentation abilities, and to stimulate their creativity.

References

  1. Bao, Z., Hong, J.M., Teran, J. and Fedkiw, R., 2007. Fracturing Rigid Materials. In IEEE Transactions on Visualization and Computer Graphics-13, pp 370-378.
  2. Bézin, R., Crespin, B., Skapin, X., Terraz, O., Meseure, P., 2011. Topological Operations for Geomorphological Evolution. In Proceedings of VRIPHYS 2011.
  3. Carter, B.J., Ingraffea, A.R., Bittencourt, T.N., 1995 (reprint 2008). Topology-controlled Modeling of Linear and Nonlinear 3D Crack Propagation in GeoMaterials. In Fracture of Brittle, Disordered Materials, G. Baker and B.L. Karihaloo Eds, Taylor & Francis Pub.
  4. Chen X., Lienhardt P, 1992. Modeling and programming evolutions of surfaces. In Computer Graphics Forum, Vol. 2, no. 5.
  5. Darles, E., Kalantari, S., Skapin, X., Crespin, B., Luciani, A., 2011. Hybrid physical - topological modeling of physical shapes transformations. In Proc. of CASA 2011 - Digital Media and Digital Content Management, pp. 154-157.
  6. Desbenoit, B., Galin, E., Akkouche, S. 2005. Modeling Cracks and Fractures. In The Visual Computer (Proceedings of Pacific Graphics). 21(8-10), 717-726.
  7. Desbrun, M., Cani-Gascuel, M-P., 1995. Animation of soft substances with implicit surfaces. In SIGGRAPH, ser. Comput. Graph., pp. 287-290.
  8. Evrard, M., Luciani, A., Castagné, N., 2006. MIMESIS : Interactive interface for mass-interaction modeling. In Proc. of CASA 2006, pp. 177-186.
  9. Fléchon, E., Zara F., Damiand, G., Jaillet, F. 2013. A generic topological framework for physical simulation. In proceedings of the 21st International Conference on Computer Graphics, Visualization and Computer Vision, pp 104-113.
  10. Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., Drettakis, G. 2012. Example-Based Fractured Appearance. In Eurographics Symposium on Rendering 2012. Vol. 31(4).
  11. Glondu, L., Marchal, M., Dumont, G., 2013. Real-Time Simulation of Brittle Fracture using Modal Analysis. In IEEE Transactions on Visualization and Computer Graphics, Vol. 19(2), pp.201-209.
  12. Habibi A., Luciani A., 2002. Dynamic particle coating. In Transactions on Visualization and Computer Graphics. Vol. 8. pp. 383-394.
  13. Irving, G., Guendelman, E., Losasso, F., Fedkiw, R., 2006. Efficient Simulation of Large Bodies of Water by Coupling Two and Three Dimensional Techniques. In Proc. of SIGGRAPH 2006, ACM TOG n°25, pp. 805- 811.
  14. Jund, T., Allaoui, A., Darles, E., Skapin, X., Meseure, P., Luciani, A., 2012. Mapping volumetric meshes to point-based motion models. In Proc. of VRIPHYS 2012, pp. 11-20.
  15. Lienhardt, P. 1994. N-dimensional generalized combinatorial maps and cellular quasi-manifolds. In Int. J. Comput. Geom. Appl., vol. 4, no. 3, pp.275-324.
  16. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R., 2008. Two-way Coupled SPH and Particle Level Set Fluid Simulation. In IEEE Transactions on Visualization and Computer Graphics, n° 14, pp. 797-804.
  17. Luciani, A., Evrard, M., Couroussé, D., , Castagné, N., , Cadoz, C., Florens, J-L., 2006. A basic gesture and motion format for virtual reality multisensory applications. In Proc. of the First International Conference on Computer Graphics Theory and Applications (GRAPP), pp. 349-356.
  18. Luciani, A., Jimenez, S., Florens, J-L., Cadoz, C., Raoult, O. 1991. Computational physics: a modeler-simulator for animated physical objects. In Proceedings of EUROGRAPHICS'91, pp. 425-436.
  19. Molino, N., Bao, Z. and Fedkiw, R., 2004. A Virtual Node Algorithm for Changing Mesh Topology During Simulation. In Proceedings of SIGGRAPH 2004, ACM TOG n°23, pp385-392.
  20. Meseure, P., Darles, E., Skapin, X., 2010. A TopologyBased Mass/Spring System. In Proc. of CASA 2010.
  21. MOKA. http://sourceforge.net/projects/moka-modeller/ Nayrolles, B., Touzot, G., Villon, O. 1992. Generalizing the finité element method : Diffuse approximation and diffuse elements. Computational Mechanics - 10, pp 307-318.
  22. O'Brien, J.F., Bargteil, A.W., Hodgins, J.K., 2002. Graphical modeling and animation of ductile fracture. In Proceedings of SIGGRAPH 2002, pp. 291-294.
  23. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J., 2005. Meshless animation of fracturing solids. In Proceedings of SIGGRAPH 2005, pp 957- 964.
  24. Prusinkiewicz, P., Lindenmayer, A., 1990. The algorithmic beauty of plants: the virtual laboratory. Springer Verlag.
  25. Wojtan, C., Thurey, N., Gross, M., Turk, G., 2009. Deforming meshes that split and merge. In ACM Transactions on Graphics, vol. 28, no. 3, pp. 76-86.
Download


Paper Citation


in Harvard Style

Luciani A., Allaoui A., Castagné N., Darles E., Skapin X. and Meseure P. (2014). MORPHO-Map - A New Way to Model Animation of Topological Transformations . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 288-300. DOI: 10.5220/0004674002880300


in Bibtex Style

@conference{grapp14,
author={Annie Luciani and Ali Allaoui and Nicolas Castagné and Emmanuelle Darles and Xavier Skapin and Philippe Meseure},
title={MORPHO-Map - A New Way to Model Animation of Topological Transformations},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},
year={2014},
pages={288-300},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004674002880300},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - MORPHO-Map - A New Way to Model Animation of Topological Transformations
SN - 978-989-758-002-4
AU - Luciani A.
AU - Allaoui A.
AU - Castagné N.
AU - Darles E.
AU - Skapin X.
AU - Meseure P.
PY - 2014
SP - 288
EP - 300
DO - 10.5220/0004674002880300