2D Shape Matching based on B-spline Curves and Dynamic Programming

Nacéra Laiche, Slimane Larabi

Abstract

In this paper, we propose an approach for two-dimensional shape representation and matching using the B-spline modelling and Dynamic Programming (DP), which is robust with respect to affine transformations such as translation, rotation, scale change and some distortions. Boundary shape is first splitedinto distinctpartsbased on the curvature. Curvature points are critical attributes for shape description, allowing the concave and convex parts of an objectrepresentation, which are obtained by the polygonal approximation algorithm in our approach. After thateach part is approximated by a normalized B-spline curve usingsome global features including the arc length, the centroid of the shape and moments.Finally, matching and retrieval of similar shapes are obtained using a similarity measure defined on their normalized curves with Dynamic Programming.Dynamic programming not only recovers the best matching, but also identifies the most similar boundary parts. The experimental results on some benchmark databases validate the proposed approach.

References

  1. Alajlan, N., El Rube, I., Kamel, M. S., Freeman, G., 2007. Shape retrieval using triangle-area representation and dynamic space warping.In Pattern Recognition.,40, 1911-1920.
  2. Arkin, E., Chew, L., Huttenlocher, D., Mitchell, J., 1991. An efficient computable metric for comparing polygonal shapes. In IEEE Transactions on Pattern. Analysis and Machine Intelligence. PAMI 13 (3), 209- 216.
  3. Belongie, S., Malik, J., Puzicha, J., 2002.Shape matching and object recognition using shape contexts. In IEEE TRANS. PAMI 24 (24), 509-521.
  4. Blum, H., 1967. A transformation for extracting new descriptors of shape.In Models for the perception of speech and visual form. MITPress, 362-379.
  5. Carmona-poyato, A., Madrid-Cuevas, F. J., MedinaCarnicer, R., Munoz-Salinas, R., 2010.Polygonal approximation of digital planar curves through break point suppression. In: PatternRecognition 43, 14-25.
  6. Chetvericov, D., 2003. A Simple and efficient algorithm for detection of high curvature points in planar curves.In 10th International Conference. CAIP, 25-27.
  7. Chong, C. W., Raveendran, P., Mukundan, R., 2003. Translation invariants of Zernike moments. In: Pattern Recognition.1765-1773.
  8. Cohen, F. S., Huang, Z., Yang, Z. Invariant matching and identification of curves using B-spline curve representation. In IEEE Transactions on Image Processing. 4(1) (1995) 1-10.
  9. Daliri, M. R., Torre, V., 2010. Classification of silhouettes using contour fragments. In Computer Vision and Image Understanding.113, 1017-1025.
  10. Dao, M. S., Amicis, R., 2006 .A new method for boundary-based shape matching and retrieval. In: Proceedings of te International Conference on Image Processing,8-11.
  11. Dubois, S. R., Glanz, FH., 1986. An autoregressive model approach to two dimensional shape classification. In: IEEE Trans Pattern Anal Mach Intell, 8, 55-65.
  12. Hwang, S. K., Kim, W. Y., 2006. A novel approach to the fast computation of Zernike moments. In: Pattern Recognition. 39, 2065-2076.
  13. Jain. A. K., Vailaya. A., 1998. Shape-based retrieval: A case study with trademark image databases. In: Pattern Recognition, 31 (9), 1369-1390.
  14. Kim. H., Kim. J., 2000.Region-based shape descriptor invariant to rotation, scale and translation, In: Signal Processing: Image Communication, 16, 87-93.
  15. Latecki, L. J, Lakamper, R. 2000. Shape similarity measure based on correspondence of visual parts. In: IEEE TPAMI. 22 (10), 1182-1190.
  16. McNeill, G., Vijayakumar, S., 2006. Hierarchical procrustes matching for shape retrieval. In: CVPR: IEEE International Conf on Computer Vision and Pattern Recognition, pp. 885-894.
  17. Mokhtarian, F., Abbasi, S., Kittler, J. (1996).Efficient and robust retrieval by shape content through curvature scale space, In International Workshop on Image Databases and Multimedia Search, pp. 35-42.
  18. Mongkolnam, P. Nukoolkit, C., Dechsakulthorn, T. 2007. Represent image contents using curves and chain code. In:IAPR Conference on Machine and Vision Applications, MVA .355-358.
  19. Paglieroni, D., Jain, A.K., 1985. A Control point theory For boundary representation and matching. In: Proc. ICASSP. 1851-1854.
  20. Philip, J., Schneider, D., Eberly, H. Geometric tools for computer graphics, Ed. Textbook Binding, 2002.
  21. Preparata, F., Shamos, M., 1985.Computational Geometry: An introduction, Springer, Berlin, Germany.
  22. Qi, H., Li, K., Shen, Y., Qu, W., (2010). An effective solution for trademark image retrieval by combining shape description and feature matching. In: Pattern Recognition, 43(6) 2017-2027.
  23. Sebastian, T. B., Klein, P. N., Kimia, B. B., 2004. Recognition of shapes by editing their shock graphs. InIEEE TRANS. PAMI 26 (5), 550-571.
  24. Singh, C., Pooja, 2011. Improving image retrieval using combined features of Hough transform and Zernike moments. In Elsevier, Optics and Lasers in Engineerin, 49 (12), 1384-1396.
  25. Wang. J., Bai. X., You.X., Liu.W., 2012.Shape matching and classification using height functions. In: Pattern Recognition Letters, 33, 134-143.
  26. Wang, W., Pottmann, H., Liu Y., 2006. Fitting B-spline curves to point clouds by curvature-based squared distance minimization”. In ACM Transactions on Graphics, 25(2), 214-38.
  27. Wang, Y., Teo, E. K. 2004. A novel 2D shape matching algorithm based on B-spline modeling. Singapore.
  28. Wei, C. H., Li, Y., Chau, W. Y., Li, C. T. (2009).Trademark image retrieval using synthetic features for describing global shape and interior structure. In: Pattern Recognition, 42 (3) 386-394.
  29. Yang, G. Y., Shu, H. Z., Toumoulin, C., Han, G. N., Luo, L. M., 2006. Efficient Legendre moments computation for grey level images. In: Pattern Recognition. 39, 74- 80.
  30. Zhang, D. S. Lu, G? 2002. Generic Fourier for shapebased image retrieval. In ICME: IEEE. International Conference on Multimedia and Expo, pp. 425-428.
Download


Paper Citation


in Harvard Style

Laiche N. and Larabi S. (2014). 2D Shape Matching based on B-spline Curves and Dynamic Programming . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 484-491. DOI: 10.5220/0004681304840491


in Bibtex Style

@conference{visapp14,
author={Nacéra Laiche and Slimane Larabi},
title={2D Shape Matching based on B-spline Curves and Dynamic Programming},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={484-491},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004681304840491},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - 2D Shape Matching based on B-spline Curves and Dynamic Programming
SN - 978-989-758-003-1
AU - Laiche N.
AU - Larabi S.
PY - 2014
SP - 484
EP - 491
DO - 10.5220/0004681304840491