A Practical and Robust Method to Compute the Boundary of Three-dimensional Axis-aligned Boxes

Daniel López Monterde, Jonàs Martínez, Marc Vigo, Núria Pla

Abstract

The union of axis-aligned boxes results in a constrained structure that is advantageous for solving certain geometrical problems. A widely used scheme for solid modelling systems is the boundary representation (Brep). We present a method to obtain the B-rep of a union of axis-aligned boxes. Our method computes all boundary vertices, and additional information for each vertex that allows us to apply already existing methods to extract the B-rep. It is based on dividing the three-dimensional problem into two-dimensional boundary computations and combining their results. The method can deal with all geometrical degeneracies that may arise. Experimental results prove that our approach outperforms existing general methods, both in efficiency and robustness.

References

  1. Aguilera, A. (1998). Orthogonal Polyhedra: Study and Application. PhD thesis, Universitat Politècnica de Catalunya.
  2. Albers, S., Kursawe, K., and Schuierer, S. (1999). Exploring unknown environments with obstacles. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, pages 842-843.
  3. Baumann, T., Jans, M., Schömer, E., Schweikert, C., and Wolpert, N. (2008). Dynamic free-space detection for packing algorithms. In EuroCG'08, pages 43-46.
  4. Biedl, T., Durocher, S., and Snoeyink, J. (2009). Reconstructing polygons from scanner data. Lecture Notes in Computer Science, 5878:862-871.
  5. Boissonnat, J.-D., Sharir, M., Tagansky, B., and Yvinec, M. (1998). Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discrete and Computational Geometry, 19(4):485-519.
  6. Bournez, O., Maler, O., and Pnueli, A. (1999). Orthogonal polyhedra: Representation and computation. Lecture Notes in Computer Science, 1569:46-60.
  7. Campen, M. and Kobbelt, L. (2010). Exact and robust (self-) intersections for polygonal meshes. Computer Graphics Forum, 29:397-406.
  8. CGAL (2013). CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.
  9. Chan, T. M. (2010). A (slightly) faster algorithm for Klee's measure problem. Computational Geometry, 43(3):243-250.
  10. Esperanc¸a, C. and Samet, H. (1997). Orthogonal polygons as bounding structures in filter-refine query processing strategies. Lecture Notes in Computer Science, 1262:197-220.
  11. Güting, R. H. (1984). An optimal contour algorithm for isooriented rectangles. Journal of Algorithms, 5(3):303- 326.
  12. Hachenberger, P. and Kettner, L. (2005). Boolean operations on 3d selective nef complexes: optimized implementation and experiments. In Proceedings of the 2005 ACM symposium on Solid and physical modeling, pages 163-174.
  13. Hoffmann, C. (1989). The problems of accuracy and robustness in geometric computation. Computer, 22(3):31- 39.
  14. Hoffmann, C. (1996). How solid is solid modeling? In Applied Computational Geometry Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Science, pages 1-8. Springer Berlin Heidelberg.
  15. Jr., W. L. and Preparata, F. P. (1980). Finding the contour of a union of iso-oriented rectangies. Journal of Algorithms, 1(3):235 - 246.
  16. Kaplan, H., Rubin, N., Sharir, M., and Verbin, E. (2007). Counting colors in boxes. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 785-794.
  17. Klee, V. (1977). Can the measure of [n1 [ai; bi] be computed in less than O (n log n) steps? The American Mathematical Monthly, 84(4):284-285.
  18. Martinez, J., Pla-Garcia, N., and Vigo, M. (2013). Skeletal representations of orthogonal shapes. Graphical Models, 75:189-207.
  19. Overmars, M. H. and Yap, C.-K. (1991). New upper bounds in Klee's measure problem. SIAM Journal on Computing, 20:1034--1045.
  20. Requicha, A. A. G. and Voelcker, H. (1985). Boolean operations in solid modeling: Boundary evaluation and merging algorithms. Proceedings of the IEEE, 73:30- 44.
  21. Sargeant, T. (2013). Carve. https://code.google.com/ p/carve/.
  22. Schifko, M., Jüttler, B., and Kornberger, B. (2010). Industrial application of exact boolean operations for meshes. In Proceedings of the 26th Spring Conference on Computer Graphics, pages 165-172.
  23. Sugihara, K. and Hayashi, Y. (2008). Automatic generation of 3D building models with multiple roofs. Tsinghua Science & Technology, 13:368 - 374.
  24. Thibault, W. C. and Naylor, B. F. (1987). Set operations on polyhedra using binary space partitioning trees. In Proceedings of the 14th annual conference on Computer graphics and interactive techniques.
  25. Vigo, M. (2011). Orto-brep. http://devel.cpl.upc. edu/orto-brep/.
  26. Vigo, M., Pla, N., Ayala, D., and Martinez, J. (2012). Efficient algorithms for boundary extraction of 2D and 3D orthogonal pseudomanifolds. Graphical Models, 74(3):61 - 74.
  27. Wood, D. (1984). The contour problem for rectilinear polygons. Information Processing Letters, 19(5):229-236.
Download


Paper Citation


in Harvard Style

López Monterde D., Martínez J., Vigo M. and Pla N. (2014). A Practical and Robust Method to Compute the Boundary of Three-dimensional Axis-aligned Boxes . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 34-42. DOI: 10.5220/0004682800340042


in Bibtex Style

@conference{grapp14,
author={Daniel López Monterde and Jonàs Martínez and Marc Vigo and Núria Pla},
title={A Practical and Robust Method to Compute the Boundary of Three-dimensional Axis-aligned Boxes},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},
year={2014},
pages={34-42},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004682800340042},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - A Practical and Robust Method to Compute the Boundary of Three-dimensional Axis-aligned Boxes
SN - 978-989-758-002-4
AU - López Monterde D.
AU - Martínez J.
AU - Vigo M.
AU - Pla N.
PY - 2014
SP - 34
EP - 42
DO - 10.5220/0004682800340042