Invariant Shape Prior Knowledge for an Edge-based Active Contours - Invariant Shape Prior for Active Contours

Mohamed Amine Mezghich, Slim M’Hiri, Faouzi Ghorbel

Abstract

In this paper, we intend to propose a new method to incorporate geometric shape prior into an edge-based active contours for robust object detection in presence of partial occlusions, low contrast and noise. A shape registration method based on phase correlation of binary images, associated with level set functions of the active contour and a reference shape, is used to define prior knowledge making the model invariant with respect to Euclidean transformations. In case of several templates, a set of complete invariant shape descriptors is used to select the most suitable one according to the evolving contour. Experimental results show the ability of the proposed approach to constrain an evolving curve towards a target shapes that may be occluded and cluttered under rigid transformations.

References

  1. Caselles, V., Kimmel, R., and Sapiro, G. (1997). Geodesic active contours. In Int. J. of Comp. Vis.
  2. Chan, T. and Vese, L. (2001). Active contours without edges. In IEEE Trans. Imag. Proc.
  3. Chan, T. and Zhu, W. (2005). Level set based shape prior segmentation. In CVPR.
  4. Charmi, M., Derrode, S., and Ghorbel, F. (2008). Fourierbased shape prior for snakes. In Pat. Recog. Let.
  5. Charmi, M., Derrode, S., and Ghorbel, F. (2009). Using fourier-based shape alignment to add geometric prior to snakes. In ICASSP.
  6. Charmi, M., Mezghich, M., M'Hiri, S., Derrode, S., and Ghorbel, F. (2010). Geometric shape prior to regionbased active contours using fourier-based shape alignment. In IST.
  7. Chen, Y., Thiruvenkadam, S., Tagare, H., Huang, F., Wilson, D., and Geiser, E. (2001). On the incorporation of shape priors into geometric active contours. In IEEE Workshop on Variational and Level Set Methods in Computer Vision.
  8. Cohen, L. (1991). On active contour models and balloons. In Graphical Models Image Process.
  9. Cremers, D., Sochen, N., and Schnorr, C. (2003). Towards recognition-based variational segmentation using shape priors and dynamic labelling. In International Conference on Scale Space Theories in Computer Vision.
  10. Derrode, S. and Ghorbel, F. (2001). Robust and efficient fourier-mellin transform approximations for gray level image reconstruction and complete invariant description. In Computer Vision and Image Understanding.
  11. Fang, W. and Chan, K. (2006). Using statistical shape priors in geodesic active contours for robust object detection. In ICPR.
  12. Fang, W. and Chan, K. (2007). Incorporating shape prior into geodesic active contours for detecting partially occluded object. In Pattern Recognition.
  13. Foulonneau, A., Charbonnier, P., and Heitz, F. (2004). Contraintes gomtriques de formes pour les contours actifs orients rgion : une approche base sur les moments de legendre. In Traitement du signal.
  14. Foulonneau, A., Charbonnier, P., and Heitz, F. (2006). Affine-invariant geometric shape priors for regionbased active contours. In IEEE Trans. Patt. Anal. Mach. Intell.
  15. Ghorbel, F. (1994). A complete invariant description for grey-level images by the harmonic analysis approach. In Pattern Recognition Lett.
  16. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes : active contour models. In Int. J. of Comp.Vis.
  17. Leventon, M., Grimson, E., and Faugeras, O. (2000). Statistical shape influence in geodesic active contours. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition.
  18. Malladi, R., Sethian, J., and Vemuri, B. (1995). Shape modeling with front propagation: A level set approach. In IEEE Trans. Patt. Anal. Mach. Intell.
  19. M'Hiri, S., Mezghich, M., and Sellemi, M. (2012). Contours actifs avec a priori de forme basé sur la transformée de fourier-mellin analytique. In Revue Traitement du Signal.
  20. Osher, S. and Sethian, J. (1988). Fronts propagating with curvature-dependent speed: algotithms based on hamilton-jacobi formulation. In J.of Computational Physics.
  21. Sellami, M. and Ghorbel, F. (2012). An invariant similarity registration algorithm based on the analytical fouriermellin transform. In EUSIPCO.
  22. Xu, C. and Prince, L. (1997). Gradient vector flow: A new external force for snakes. In IEEE Proc. Conf. on Computer Vision and Pattern Recognition.
  23. Zhang, T. and Freedman, D. (2003). Tracking objects using density matching and shape priors. In International Conference on Computer Vision.
Download


Paper Citation


in Harvard Style

Mezghich M., M’Hiri S. and Ghorbel F. (2014). Invariant Shape Prior Knowledge for an Edge-based Active Contours - Invariant Shape Prior for Active Contours . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 454-461. DOI: 10.5220/0004692304540461


in Bibtex Style

@conference{visapp14,
author={Mohamed Amine Mezghich and Slim M’Hiri and Faouzi Ghorbel},
title={Invariant Shape Prior Knowledge for an Edge-based Active Contours - Invariant Shape Prior for Active Contours},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={454-461},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004692304540461},
isbn={978-989-758-004-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - Invariant Shape Prior Knowledge for an Edge-based Active Contours - Invariant Shape Prior for Active Contours
SN - 978-989-758-004-8
AU - Mezghich M.
AU - M’Hiri S.
AU - Ghorbel F.
PY - 2014
SP - 454
EP - 461
DO - 10.5220/0004692304540461