Surface Reconstruction of Ancient Water Storage Systems - An Approach for Sparse 3D Sonar Scans and Fused Stereo Images

Erik A. Nelson, Ian T. Dunn, Jeffrey Forrester, Timothy Gambin, Christopher M. Clark, Zoë Wood

Abstract

This work presents a process pipeline that addresses the problem of reconstructing surfaces of underwater structures from stereo images and sonar scans collected with a micro-ROV on the islands of Malta and Gozo. Using a limited sensor load, sonar and small GoPro Hero2 cameras, the micro-ROV is able to explore water systems and gather data. As a preprocess to the reconstruction pipeline, a 3D evidence grid is created by mosaicing horizontal and vertical sonar scans. A volumetric representation is then constructed using a level set method. Fine-scale details from the scene are captured in stereo cameras, and are transformed into point clouds and projected into the volume. A raycasting technique is used to trim the volume in accordance with the projected point clouds, thus reintroducing fine details to the rough sonar-generated model. The resulting volume is surfaced, yielding a final mesh which can be viewed and interacted with for archaeological and educational purposes. Initial results from both steps of the reconstruction pipeline are presented and discussed.

References

  1. Adalsteinsson, D. and Sethian, J. A. (1994). A fast level set method for propagating interfaces. Journal of Computational Physics, pages 269-277.
  2. Beall, C., Lawrence, B. J., Ila, V., and Dellaert, F. (2010). 3d reconstruction of underwater structures. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 4418-4423. IEEE.
  3. Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1):25-30.
  4. Campos, R., Garcia, R., and Nicosevici, T. (2011). Surface reconstruction methods for the recovery of 3d models from underwater interest areas. In OCEANS, 2011 IEEE - Spain, pages 1-10.
  5. Deng, S., Li, Y., Jiang, L., Cao, Y., and Zhang, J. (2011). Variational surface reconstruction from sparse and nonparallel contours for freehand 3d ultrasound. In Informatics in Control, Automation and Robotics, pages 51-58. Springer.
  6. Dobke, A., Vasquez, J., Lieu, L., Chasnov, B., Clark, C., Dunn, I., Wood, Z., and Timothy, G. (2013). Towards three-dimensional underwater mapping without odometry. In To appear in: Proceedings of the 18th International Symposium on Unmanned Untethered Submersible Technology (UUST).
  7. Drap, P., Seinturier, J., Scaradozzi, D., Gambogi, P., Long, L., and Gauch, F. (2007). Photogrammetry for virtual exploration of underwater archeological sites. In Proceedings of the 21st International Symposium, CIPA 2007: AntiCIPAting the Future of the Cultural Past: Athens (Greece), 01-06 October 2007. Citeseer.
  8. Forney, C., Forrester, J., Bagley, B., McVicker, W., White, J., Smith, T., Batryn, J., Gonzalez, A., Lehr, J., Gambin, T., et al. (2011). Surface reconstruction of maltese cisterns using rov sonar data for archeological study. In Advances in Visual Computing, pages 461- 471. Springer.
  9. Forrester, J., McVicker, W., Gambin, T., Clark, C., and Wood, Z. J. (2013). Uncertainty visualization and hole filling for geometric models of ancient water system. In Proceedings of the 4th International Conference on Information Visualization Theory and Application (IVAPP).
  10. Hurtós, M., i Soler, X. C., and Salvi, J. (2009). Integration of optical and acoustic sensors for d underwater scene reconstruction. Instrumentation viewpoint, (8):43.
  11. Ju, T., Losasso, F., Schaefer, S., and Warren, J. (2002). Dual contouring of hermite data. ACM Trans. Graph., 21(3):339-346.
  12. Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction. In Proceedings of the fourth Eurographics symposium on Geometry processing.
  13. Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. In ACM Siggraph Computer Graphics, volume 21, pages 163-169. ACM.
  14. Mahon, I., Pizarro, O., Johnson-Roberson, M., Friedman, A., Williams, S. B., and Henderson, J. C. (2011). Reconstructing pavlopetri: Mapping the world's oldest submerged town using stereo-vision. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 2315-2321. IEEE.
  15. McVicker, W., Forrester, J., Gambin, T., Lehr, J., Wood, Z. J., and Clark, C. M. (2012). Mapping and visualizing ancient water storage systems with an rov an approach based on fusing stationary scans within a particle filter. In Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on, pages 538- 544. IEEE.
  16. Mullen, P., De Goes, F., Desbrun, M., Cohen-Steiner, D., and Alliez, P. (2010). Signing the unsigned: Robust surface reconstruction from raw pointsets. In Computer Graphics Forum, volume 29, pages 1733-1741. Wiley Online Library.
  17. Nalpantidis, L. and Gasteratos, A. (2010). Stereo vision for robotic applications in the presence of non-ideal lighting conditions. Image and Vision Computing, 28(6):940-951.
  18. Nascimento, E., Campos, M., and Barros, W. (2009). Stereo based structure recovery of underwater scenes from automatically restored images. In Computer Graphics and Image Processing (SIBGRAPI), 2009 XXII Brazilian Symposium on, pages 330-337. IEEE.
  19. Osher, S. and Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces, volume 153. Springer Verlag.
  20. Papaleo, L. and Puppo, E. (2004). Online Data Fusion for building 3D models from acoustical range. Technical Report DISI-TR-05-04, University of Genov.
  21. Scharstein, D. and Szeliski, R. (1998). Stereo matching with nonlinear diffusion. International Journal of Computer Vision, 28:155-174. 10.1023/A:1008015117424.
  22. Schmidt, V. E. and Rzhanov, Y. (2012). Measurement of micro-bathymetry with a gopro underwater stereo camera pair. In Oceans, 2012, pages 1-6. IEEE.
  23. Sethian, J. (2001). Evolution, implementation, and application of level set and fast marching methods for advancing fronts. Journal of Computational Physics, 169(2):503-555.
  24. Swirski, Y., Schechner, Y. Y., Herzberg, B., and Negahdaripour, S. (2010). Underwater stereo using natural flickering illumination. In OCEANS 2010, pages 1-7. IEEE.
  25. Zhao, H.-K., Osher, S., and Fedkiw, R. (2001). Fast surface reconstruction using the level set method. In Variational and Level Set Methods in Computer Vision, 2001. Proceedings. IEEE Workshop on, pages 194- 201. IEEE.
  26. Zitnick, C. L. and Kanade, T. (2000). A cooperative algorithm for stereo matching and occlusion detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(7):675-684.
Download


Paper Citation


in Harvard Style

A. Nelson E., T. Dunn I., Forrester J., Gambin T., M. Clark C. and Wood Z. (2014). Surface Reconstruction of Ancient Water Storage Systems - An Approach for Sparse 3D Sonar Scans and Fused Stereo Images . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 161-168. DOI: 10.5220/0004694901610168


in Bibtex Style

@conference{grapp14,
author={Erik A. Nelson and Ian T. Dunn and Jeffrey Forrester and Timothy Gambin and Christopher M. Clark and Zoë Wood},
title={Surface Reconstruction of Ancient Water Storage Systems - An Approach for Sparse 3D Sonar Scans and Fused Stereo Images},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},
year={2014},
pages={161-168},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004694901610168},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - Surface Reconstruction of Ancient Water Storage Systems - An Approach for Sparse 3D Sonar Scans and Fused Stereo Images
SN - 978-989-758-002-4
AU - A. Nelson E.
AU - T. Dunn I.
AU - Forrester J.
AU - Gambin T.
AU - M. Clark C.
AU - Wood Z.
PY - 2014
SP - 161
EP - 168
DO - 10.5220/0004694901610168