An EMF-based Toolkit for Creation of Domain-specific Data Services

Andreas Bender, Stefan Bozic, Ivan Kondov

Abstract

Development of composite workflow applications in science and engineering is troublesome and costly due to high heterogeneity of data representations and data access interfaces of the underlying individual components. As an effective solution we present a generic toolkit enabling domain experts to develop data models and automatically generate a self-contained data access service. We defined a custom metamodel based on Ecore which can be readily used to create domain-specific data models. Using the generated data access service, instances of the modeled data residing on heterogeneous and distributed resources, such as databases and cloud data stores, are accessible from the individual application components via a language-independent Web service interface. We discuss the framework architecture, the toolkit implementation, the deployment process, as well as the performance of the data access service. Workflow designers as target users would benefit from the toolkit by using it for rapid and cost-efficient application integration.

References

  1. Ambler, S. W. (2012). Mapping Objects to Relational Databases: O/R Mapping In Detail. http://www.agiledata.org/essays/mappingObjects.htm [Online; accessed 6-August-2013].
  2. Bender, A., Poschlad, A., Bozic, S., and Kondov, I. (2013). A Service-oriented Framework for Integration of Domain-specific Data Models in Scientific Workflows. Procedia Computer Science, 18:1087 - 1096. 2013 International Conference on Computational Science.
  3. Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., dos Santos Vieira, I., Fels, G., Gesing, S., Grunzke, R., Herres-Pawlis, S., Kohlbacher, O., Kruger, J., Lang, U., Packschies, L., Muller-Pfefferkorn, R., Schafer, P., Steinke, T., Warzecha, K.-D., and Wewior, M. (2012). MoSGrid: efficient data management and a standardized data exchange format for molecular simulations in a grid environment. Journal of Cheminformatics, 4(Suppl 1):P21.
  4. Bozic, S. and Kondov, I. (2012). Dataflow Management: A Grand Challenge in Multiscale Materials Modelling. In Cunningham, P. and Cunningham, M., editors, eChallenges e-2012 Conference Proceedings, page Ref. 38. IIMC International Information Management Corporation.
  5. Bozic, S., Kondov, I., Meded, V., and Wenzel, W. (2012). UNICORE-Based Workflows for the Simulation of Organic Light-Emitting Diodes. In Huber, V., MüllerPfefferkorn, R., and Romberg, M. R., editors, UNICORE Summit 2012 Proceedings, May 30-31, 2012, Dresden, Germany, volume 15 of IAS Series, pages 15-25. Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag.
  6. Dubitzky, W., McCourt, D., Galushka, M., Romberg, M., and Schuller, B. (2004). Grid-enabled data warehousing for molecular engineering. Parallel Computing, 30(9-10):1019-1035.
  7. Ellis, H., Fox-Erlich, S., Martyn, T., and Gryk, M. (2006). Development of an Integrated Framework for Protein Structure Determinations: A Logical Data Model for NMR Data Analysis. In Third International Conference on Information Technology: New Generations, 2006. ITNG 2006., pages 613-618.
  8. Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR, Upper Saddle River, NJ, USA.
  9. Espinazo Pagán, J., Sánchez Cuadrado, J., and García Molina, J. (2011). Morsa: A Scalable Approach for Persisting and Accessing Large Models. In Whittle, J., Clark, T., and Kühne, T., editors, Model Driven Engineering Languages and Systems, volume 6981 of Lecture Notes in Computer Science, pages 77-92. Springer Berlin Heidelberg.
  10. Fogh, R. H., Boucher, W., Ionides, J. M. C., Vranken, W. F., Stevens, T. J., and Laue, E. D. (2010). MEMOPS: Data modelling and automatic code generation. J. Integr. Bioinform., 7(3):123-145.
  11. M. C., and Laue, E. D. (2005). A framework for scientific data modeling and automated software development. Bioinformatics, 21(8):1678-1684.
  12. Kondov, I., Maul, R., Bozic, S., Meded, V., and Wenzel, W. (2011). UNICORE-Based Integrated Application Services for Multiscale Materials Modelling. In Romberg, M., Bala, P., Müller-Pfefferkorn, R., and Mallmann, D., editors, UNICORE Summit 2011 Proceedings, 7-8 July 2011, Torun, Poland, volume 9 of IAS Series, pages 1-10, Jülich. Forschungszentrum Jülich GmbH Zentralbibliothek.
  13. Manduchi, G., Iannone, F., Imbeaux, F., Huysmans, G., Lister, J., Guillerminet, B., Strand, P., Eriksson, L.-G., and Romanelli, M. (2008). A universal access layer for the Integrated Tokamak Modelling Task Force. Fusion Engineering and Design, 83(2-3):462 - 466.
  14. Murray-Rust, P., Townsend, J., Adams, S., Phadungsukanan, W., and Thomas, J. (2011). The semantics of Chemical Markup Language (CML): dictionaries and conventions. Journal of Cheminformatics, 3(1):43.
  15. Nowling, R., Vyas, J., Weatherby, G., Fenwick, M., Ellis, H., and Gryk, M. (2011). CONNJUR spectrum translator: an open source application for reformatting NMR spectral data. Journal of Biomolecular NMR, 50:83-89.
  16. OMG (2003). UML 2.0 Infrastructure Specification. Technical Report ptc/03-09-15, Object Management Group.
  17. Oracle Corporation (2013a). JSR 222: Java(TM) Architecture for XML Binding (JAXB) 2.0. http://jcp.org/en/jsr/detail?id=222 [Online; accessed 6-August-2013].
  18. Oracle Corporation (2013b). JSR 243: Java(TM) Data Objects 2.0 - An Extension to the JDO specification. http://jcp.org/en/jsr/detail?id=243 [Online; accessed 6-August-2013].
  19. Oracle Corporation (2013c). JSR 317: Java(TM) Persistence 2.0. http://jcp.org/en/jsr/detail?id=317 [Online; accessed 6-August-2013].
  20. Oracle Corporation (2013d). JSR 339: JAX-RS 2.0: The Java API for RESTful Web Services. http://jcp.org/en/jsr/detail?id=339 [Online; accessed 6-August-2013].
  21. Rabbi, F. and MacCaull, W. (2012). T : A Domain Specific Language for Rapid Workflow Development. In France, R. B., Kazmeier, J., Breu, R., and Atkinson, C., editors, Model Driven Engineering Languages and Systems, volume 7590 of Lecture Notes in Computer Science, pages 36-52. Springer Berlin Heidelberg.
  22. Rahon, D., Gayno, R., Gratien, J.-M., Le Fur, G., and Schneider, S. (2012). Migration to model driven engineering in the development process of distributed scientific application software. In Proceedings of the 3rd annual conference on Systems, programming, and applications: software for humanity, SPLASH 7812, pages 181-190, New York, NY, USA. ACM.
  23. Richardson, L. and Ruby, S. (2007). Restful web services. O'Reilly, first edition.
  24. Sadiq, S., Orlowska, M., Sadiq, W., and Foulger, C. (2004). Data flow and validation in workflow modelling. In Proceedings of the 15th Australasian database conference, volume 27 of ADC 7804, pages 207-214, Darlinghurst, Australia, Australia. Australian Computer Society, Inc.
  25. Schmidt, D. (2006). Guest Editor's Introduction: ModelDriven Engineering. IEEE Computer, 39(2):25-31.
  26. Sild, S., Maran, U., Lomaka, A., and Karelson, M. (2006). Open Computing Grid for Molecular Science and Engineering. J. Chem. Inf. Modeling, 46:953-959.
  27. Sild, S., Maran, U., Romberg, M., Schuller, B., and Benfenati, E. (2005). OpenMolGRID: Using Automated Workflows in GRID Computing Environment. In Sloot, P., Hoekstra, A., Priol, T., Reinefeld, A., and Bubak, M., editors, Advances in Grid Computing - EGC 2005, volume 3470 of Lecture Notes in Computer Science, pages 464-473. Springer.
  28. Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D. (2005). The CCPN data model for NMR spectroscopy: Development of a software pipeline. Proteins: Structure, Function, and Bioinformatics, 59(4):687-696.
  29. W3C (2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
Download


Paper Citation


in Harvard Style

Bender A., Bozic S. and Kondov I. (2014). An EMF-based Toolkit for Creation of Domain-specific Data Services . In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, ISBN 978-989-758-007-9, pages 30-40. DOI: 10.5220/0004701900300040


in Bibtex Style

@conference{modelsward14,
author={Andreas Bender and Stefan Bozic and Ivan Kondov},
title={An EMF-based Toolkit for Creation of Domain-specific Data Services},
booktitle={Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,},
year={2014},
pages={30-40},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004701900300040},
isbn={978-989-758-007-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,
TI - An EMF-based Toolkit for Creation of Domain-specific Data Services
SN - 978-989-758-007-9
AU - Bender A.
AU - Bozic S.
AU - Kondov I.
PY - 2014
SP - 30
EP - 40
DO - 10.5220/0004701900300040