Edge-based Foreground Detection with Higher Order Derivative Local Binary Patterns for Low-resolution Video Processing

Francis Deboeverie, Gianni Allebosch, Dirk Van Haerenborgh, Peter Veelaert, Wilfried Philips

Abstract

Foreground segmentation is an important task in many computer vision applications and a commonly used approach to separate foreground objects from the background. Extremely low-resolution foreground segmentation, e.g. on video with resolution of 30x30 pixels, requires modifications of traditional high-resolution methods. In this paper, we adapt a texture-based foreground segmentation algorithm based on Local Binary Patterns (LBPs) into an edge-based method for low-resolution video processing. The edge information in the background model is introduced by a novel LBP strategy with higher order derivatives. Therefore, we propose two new LBP operators. Similar to the gradient operator and the Laplacian operator, the edge information is obtained by the magnitudes of First Order Derivative LBPs (FOD-LBPs) and the signs of Second Order Derivative LBPs (SOD-LBPs). Posterior to background subtraction, foreground corresponds to edges on moving objects. The method is implemented and tested on low-resolution images produced by monochromatic smart sensors. In the presence of illumination changes, the edge-based method outperforms texture-based foreground segmentation at low resolutions. In this work, we demonstrate that edge information becomes more relevant than texture information when the image resolution scales down.

References

  1. Ahonen, T., Hadid, A., and Pietikäinen, M. (2006). Face description with local binary patterns: application to face recognition. IEEE Trans. on Pattern Recogn. and Machine Intelligence, 28(12):2037-2041.
  2. Ahonen, T. and Pietikäinen, M. (2009). Image description using joint distribution of filter bank responses. Pattern Recognition Letters, 30(4):368-376.
  3. Barnich, O. and Droogenbroeck, M. V. (2009). Vibe: a powerful random technique to estimate the background in video sequences. In IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pages 945-948.
  4. Camilli, M. and Kleihorst, R. P. (2011). Demo: Mouse sensor networks, the smart camera. In ACM/IEEE Int. Conf. on Distributed Smart Cameras, pages 1-3.
  5. Gonzalez, R. C. and Woods, R. E. (2001). Digital Image Processing. Addison-Wesley Longman Publishing Co., Boston, MA, USA, 2nd edition.
  6. Grüenwedel, S., Hese, P. V., and Philips, W. (2011). An edge-based approach for robust foreground detection. In Proc. of Advanced Concepts for Intelligent Vision Systems, pages 554-565.
  7. Grünwedel, S., Jelac?a, V., Hese, P. V., Kleihorst, R., and Philips, W. (2011). Phd forum : Multi-view occupancy maps using a network of low resolution visual sensors. In 2011 Fifth ACM/IEEE Int. Conf. on Distributed Smart Cameras. IEEE.
  8. Grünwedel, S., Jelac?a, V., no Castan˜eda, J. N., Hese, P. V., Cauwelaert, D. V., Haerenborgh, D. V., Veelaert, P., and Philips, W. (2013). Low-complexity scalable distributed multi-camera tracking of humans. ACM Transactions on Sensor Networks, 10(2).
  9. Heikkilä, M. and Pietikäinen, M. (2006). A texture-based method for modeling the background and detecting moving objects. IEEE Trans. on Pattern Recognition and Machine Intelligence, 28(4):657-662.
  10. Heikkilä, M., Pietikäinen, M., and Schmid, C. (2009). Detection of interest regions with local binary patterns. Pattern Recognition, 42(3):425-436.
  11. Hengstler, S. and Aghajan, H. (2006). A smart camera mote architecture for distributed intelligent surveillance. In ACM SenSys Workshop on Distributed Smart Cameras.
  12. Huang, X., Li, S., and Wang, Y. (2004). Shape localization based on statistical method using extended local binary pattern. In Proc. of Int. Conf. on Image and Graphics, pages 184-187.
  13. Mäenpää, T., Ojala, T., Pietikäinen, M., and Soriano, M. (2000). Robust texture classification by subsets of local binary patterns. In Proc. of Int. Conf. on Pattern Recognition, pages 935-938.
  14. Marr, D. and Hildreth, E. (2000). Theory of edge detection. In Proc. of Int. Conf. on Pattern Recognition, volume 207, pages 935-938.
  15. Movshon, J., Adelson, E. H., Gizzi, M. S., and Newsome, W. T. (1986). The analysis of moving visual patterns. Pattern Recognition Mechanisms, 54:117-151.
  16. Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29(1):51-59.
  17. Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Recognition and Machine Intelligence, 24(7):971-987.
  18. Pietikäinen, M., Nurmela, T., Mäenpää, T., and Turtinen, M. (2004). View-based recognition of real-world textures. Pattern Recognition, 37(2):313-323.
  19. Tenorth, M., , M., Bandouch, J., and Beetz, M. (2009). The tum kitchen data set of everyday manipulation activities for motion tracking and action recognition. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 1089- 1096.
  20. Yao, C.-H. and Chen, S.-Y. (2003). Retrieval of translated, rotated and scaled color textures. Pattern Recognition, 36(4):913-929.
  21. Zhang, B., Gao, Y., Zhao, S., and Liu, J. (2010). Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. on Im. Proc., 19(2):533-544.
  22. Zhao, S., Gao, Y., and Zhang, B. (2008). Sobel-lbp. In IEEE Int. Conf on Image Processing, pages 2144-2147.
  23. Zivkovic, Z. (2004). Improved adaptive gaussian mixture model for background subtraction. In Proc. of Int. Conf. on Pattern Recogn., pages 28-31.
Download


Paper Citation


in Harvard Style

Deboeverie F., Allebosch G., Van Haerenborgh D., Veelaert P. and Philips W. (2014). Edge-based Foreground Detection with Higher Order Derivative Local Binary Patterns for Low-resolution Video Processing . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 339-346. DOI: 10.5220/0004723403390346


in Bibtex Style

@conference{visapp14,
author={Francis Deboeverie and Gianni Allebosch and Dirk Van Haerenborgh and Peter Veelaert and Wilfried Philips},
title={Edge-based Foreground Detection with Higher Order Derivative Local Binary Patterns for Low-resolution Video Processing},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={339-346},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004723403390346},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - Edge-based Foreground Detection with Higher Order Derivative Local Binary Patterns for Low-resolution Video Processing
SN - 978-989-758-003-1
AU - Deboeverie F.
AU - Allebosch G.
AU - Van Haerenborgh D.
AU - Veelaert P.
AU - Philips W.
PY - 2014
SP - 339
EP - 346
DO - 10.5220/0004723403390346