Improving Visual Tracking Robustness in Cluttered and Occluded Environments using Particle Filter with Hybrid Resampling

Flavio de Barros Vidal, Alexandre Zaghetto, Carla M. C. C. Koike, Diego A. L. Cordoba

Abstract

Occlusions and cluttered environments represent real challenges for visual tracking methods. In order to increase robustness for such situations, we present, in this article, a method for visual tracking using a Particle Filter with Hybrid Resampling. Our approach consists of using a particle filter to estimate the state of the tracked object, and both particles’ inertia and update information are used in the resampling stage. The proposed method is tested using a public benchmark and the results are compared with other tracking algorithms. The results show that our approach performs better in cluttered environments, as well as in situations with total or partial occlusions.

References

  1. Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. In International Journal of Computer Vision, volume 2, pages 283-310.
  2. Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal procesing, 50.
  3. Bakhshande, F. and Taghirad, H. (2013). Visual tracking in four degrees of freedom using kernel projected measurement. In Robotics and Mechatronics (ICRoM), 2013 First RSI/ISM International Conference on, pages 425-430.
  4. Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition.
  5. Doucet, A., De Freitas, N., and Gordon, N., editors (2001). Sequential Monte Carlo methods in practice.
  6. Doucet, A., Godsill, S., and Andrieu, C. (2000). On sequential monte carlo methods for bayesian filtering. Statistics and Computing, 10:197-208.
  7. Gao, X., You, D., and Katayama, S. (2012). Seam tracking monitoring based on adaptive kalman filter embedded elman neural network during high-power fiber laser welding. Industrial Electronics, IEEE Transactions on, 59(11):4315-4325.
  8. Ge, W., Collins, R., and Ruback, R. (2012). Vision-based analysis of small groups in pedestrian crowds. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5):1003-1016.
  9. Gordon, N., Salmond, D., and Smith, A. F. M. (1993). Novel approach to nonlinear/non-gaussian bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, 140(2):107-113.
  10. Kitagawa, G. (1996). Monte carlo filter and smoother for non-gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5:1-25.
  11. Leibe, B., Schindler, K., Cornelis, N., and Van Gool, L. (2008). Coupled object detection and tracking from static cameras and moving vehicles. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(10):1683-1698.
  12. Li, J. and Chua, C.-S. (2003). Transductive inference for color-based particle filter tracking. 3:III-949-52 vol.2.
  13. Limprasert, W., Wallace, A., and Michaelson, G. (2013). Real-time people tracking in a camera network. Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 3(2):263-271.
  14. Maier-Hein, L., Mountney, P., Bartoli, A., Elhawary, H., Elson, D., Groch, A., Kolb, A., Rodrigues, M., Sorger, J., Speidel, S., and Stoyanov, D. (2013). Optical techniques for 3d surface reconstruction in computerassisted laparoscopic surgery. Medical Image Analysis, 17(8):974 - 996.
  15. Mohan, K. and Wilscy, M. (2013). Object ranging and tracking for aircraft landing system. In Signal Processing Image Processing Pattern Recognition (ICSIPR), 2013 International Conference on, pages 278- 282.
  16. Prez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002). Color-based probabilistic tracking. pages 661-675.
  17. Romo-Morales, L., Sanchez, A., Parra-Vega, V., Garcia, O., and Ruiz-Sanchez, F. (2013). Visual control for trajectory tracking of quadrotors and real-time analysis on an emulated environment. In American Control Conference (ACC), 2013, pages 6315-6321.
  18. Rui, T., Zhang, Q., Zhou, Y., and Xing, J. (2013). Object tracking using particle filter in the wavelet subspace. Neurocomputing, 119(0):125 - 130. ¡ce:title¿Intelligent Processing Techniques for Semantic-based Image and Video Retrieval¡/ce:title¿.
  19. Siradjuddin, I., Behera, L., McGinnity, T., and Coleman, S. (2013). Image-based visual servoing of a 7-dof robot manipulator using an adaptive distributed fuzzy pd controller.
  20. Straka, O. and S? imandl, M. (2005). Using the Bhattacharyya distance in functional sampling density of particle filter, pages 1-6. IFAC, Prague.
  21. Vidal, F. B. and Alcalde, V. H. C. (2005). Motion segmentation in sequential images based on the differential optical flow. 2nd International Conference on Informatics in Control, Automation and Robotics -ICINCO, pages 94-100.
  22. Yin, F., Makris, D., and Velastin, S. (2007). Performance evaluation of object tracking algorithms. Proceeding Tenth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.
  23. Zhou, X., Li, Y., and He, B. (2014). Entropy distribution and coverage rate-based birth intensity estimation in gm-phd filter for multi-target visual tracking. Signal Processing, 94(0):650 - 660.
Download


Paper Citation


in Harvard Style

de Barros Vidal F., A. L. Cordoba D., Zaghetto A. and M. C. C. Koike C. (2014). Improving Visual Tracking Robustness in Cluttered and Occluded Environments using Particle Filter with Hybrid Resampling . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 605-612. DOI: 10.5220/0004731006050612


in Bibtex Style

@conference{visapp14,
author={Flavio de Barros Vidal and Diego A. L. Cordoba and Alexandre Zaghetto and Carla M. C. C. Koike},
title={Improving Visual Tracking Robustness in Cluttered and Occluded Environments using Particle Filter with Hybrid Resampling},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={605-612},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004731006050612},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Improving Visual Tracking Robustness in Cluttered and Occluded Environments using Particle Filter with Hybrid Resampling
SN - 978-989-758-009-3
AU - de Barros Vidal F.
AU - A. L. Cordoba D.
AU - Zaghetto A.
AU - M. C. C. Koike C.
PY - 2014
SP - 605
EP - 612
DO - 10.5220/0004731006050612