A Qualitative Framework for Analysing Homeostasis in Gene Networks

Sohei Ito, Shigeki Hagihara, Naoki Yonezaki

Abstract

Toward the system level understanding of the mechanisms contributing homeostasis in organisms, a computational framework to model a system and analyse its properties is indispensable. The purpose of this work is to provide a framework which enables testing and validating homeostatic properties on gene regulatory networks in silico. Based on a qualitative analysis framework for gene networks using temporal logic, we proposed a novel formulation of homeostasis by the notion of realisability. This formulation of homeostasis yields a qualitative method to analyse homeostasis of gene networks. In this formulation, homeostasis is captured by a response not for just an instantaneous stimulation such as dose-response relationships but for any input scenario e.g. oscillating or continuous inputs, which is difficult to be captured by quantitative models. Moreover, we can consider any number of inputs from an environment without difficulty. Such flexibility is a notable advantage of our framework. We demonstrate the usefulness of our framework in analysing a number of small but tricky networks.

References

  1. Abadi, M., Lamport, L., and Wolper, P. (1989). Realizable and unrealizable specifications of reactive systems. In ICALP 7889: Proceedings of the 16th International Colloquium on Automata, Languages and Programming, volume 372 of LNCS, pages 1-17, London, UK. Springer-Verlag.
  2. Aoshima, T., Sakuma, K., and Yonezaki, N. (2001). An efficient verification procedure supporting evolution of reactive system specifications. In Proceedings of the 4th International Workshop on Principles of Software Evolution, IWPSE 7801, pages 182-185, New York, NY, USA. ACM.
  3. Barringer, H. (1987). Up and down the temporal way. The Computer Journal, 30(2):134-148.
  4. Barringer, H., Kuiper, R., and Pnueli, A. (1984). Now you may compose temporal logic specifications. In Proceedings of the sixteenth annual ACM symposium on Theory of computing, STOC 7884, pages 51-63, New York, NY, USA. ACM.
  5. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., and Schneider, D. (2005). Validation of qualitative models of genetic regulatory networks by model checking : Analysis of the nutritional stress response in Escherichia coli. Bioinformatics, 21(Suppl.1):i19-i28.
  6. Bernot, G., Comet, J., Richard, A., and Guespin, J. (2004). Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. J. Theor. Biol., 229(3):339-347.
  7. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., K├Ânighofer, R., Roveri, M., Schuppan, V., and Seeber, R. (2010). RATSY - a new requirements analysis tool with synthesis. In Proceedings of the 22nd international conference on Computer Aided Verification, volume 6174 of LNCS, pages 425-429, Berlin, Heidelberg. Springer-Verlag.
  8. Clarke, E., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.
  9. Croft, D., O'Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., Jupe, S., Kalatskaya, I., Mahajan, S., May, B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung, C., Birney, E., Hermjakob, H., D'Eustachio, P., and Stein, L. (2011). Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research, 39(Database-Issue):691-697.
  10. de Jong, H., Geiselmann, J., Hernandez, G., and Page, M. (2003). Genetic network analyzer: Qualitative simulation of genetic regulatory networks. Bioinformatics, 19(3):336-344.
  11. Emerson, E. A. (1990). Temporal and modal logic. In Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pages 995-1072. MIT Press.
  12. Fages, F., Soliman, S., and Chabrier-Rivier, N. (2004). Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. J. Biol. Phys. Chem., 4:64-73.
  13. Filiot, E., Jin, N., and Raskin, J.-F. (2009). An antichain algorithm for ltl realizability. In Proceedings of the 21st International Conference on Computer Aided Verification, volume 5126 of LNCS, pages 263-277, Berlin, Heidelberg. Springer-Verlag.
  14. Hagihara, S., Kitamura, Y., Shimakawa, M., and Yonezaki, N. (2009). Extracting environmental constraints to make reactive system specifications realizable. In Proceedings of the 2009 16th Asia-Pacific Software Engineering Conference, APSEC 7809, pages 61-68, Washington, DC, USA. IEEE Computer Society.
  15. Hagihara, S. and Yonezaki, N. (2006). Completeness of verification methods for approaching to realizable reactive specifications. In Completeness of Verification methods for Approaching to Realizable Reactive Specifications, volume 348, pages 242 - 257.
  16. Ito, S., Ichinose, T., Shimakawa, M., Izumi, N., Hagihara, S., and Yonezaki, N. (2013a). Modular analysis of gene networks by linear temporal logic. J. Integrative Bioinformatics, 10(2).
  17. Ito, S., Ichinose, T., Shimakawa, M., Izumi, N., Hagihara, S., and Yonezaki, N. (2013b). Qualitative analysis of gene regulatory networks using network motifs. In Proceedings of the 4th International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS2013), pages 15-24.
  18. Ito, S., Izumi, N., Hagihara, S., and Yonezaki, N. (2010). Qualitative analysis of gene regulatory networks by satisfiability checking of linear temporal logic. In Proceedings of the 10th IEEE International Conference on Bioinformatics & Bioengineering, pages 232-237.
  19. Jobstmann, B. and Bloem, R. (2006). Optimizations for ltl synthesis. In Proceedings of the Formal Methods in Computer Aided Design, FMCAD 7806, pages 117- 124, Washington, DC, USA. IEEE Computer Society.
  20. Jobstmann, B., Galler, S., Weiglhofer, M., and Bloem, R. (2007). Anzu: a tool for property synthesis. In Proceedings of the 19th international conference on Computer aided verification, volume 4590 of LNCS, pages 258-262, Berlin, Heidelberg. Springer-Verlag.
  21. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2011). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res.
  22. Karp, P. D., Riley, M., Paley, S. M., and Pellegrini-Toole, A. (2002). The MetaCyc Database. Nucleic Acids Res., 30(1):59-61.
  23. Mori, R. and Yonezaki, N. (1993). Several realizability concepts in reactive objects. In Information Modeling and Knowledge Bases IV, pages 407-424.
  24. Pnueli, A. and Rosner, R. (1989). On the synthesis of a reactive module. In POPL 7889: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 179-190, New York, NY, USA. ACM.
  25. Rabinovich, A. (1998). On translations of temporal logic of actions into monadic second-order logic. Theor. Comput. Sci., 193:197-214.
  26. Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H., Sirota-Madi, A., Olender, T., Golan, Y., Stelzer, G., Harel, A., and Lancet, D. (2010). GeneCards Version 3: the human gene integrator. Database, 2010(0):baq020+.
  27. Snoussi, E. and Thomas, R. (1993). Logical identification of all steady states: the concept of feedback loop characteristic states. B. MATH. BIOL., 55(5):973-991.
  28. Thomas, R. and Kauffman, M. (2001). Multistationarity, the basis of cell differentiation and memory. II. logical analysis of regulatory networks in terms of feedback circuits. CHAOS, 11(1):180-195.
  29. Tomita, T., Hagihara, S., and Yonezaki, N. (2011). A probabilistic temporal logic with frequency operators and its model checking. In INFINITY, pages 79-93. EPTCS.
  30. Tomita, T., Hiura, S., Hagihara, S., and Yonezaki, N. (2012). A temporal logic with mean-payoff constraints. In Proceedings of the 14th international conference on Formal Engineering Methods: formal methods and software engineering, volume 7635 of LNCS, pages 249-265, Berlin, Heidelberg. SpringerVerlag.
  31. Vanitha, V., Yamashita, K., Fukuzawa, K., and Yonezaki., N. (2000). A method for structuralisation of evolutional specifications of reactive systems. In ICSE 2000, The Third International Workshop on Intelligent Software Engineering (WISE3), pages 30 - 38.
  32. Vardi, M. Y. (1995). An automata-theoretic approach to fair realizability and synthesis. In Proceedings of the 7th International Conference on Computer Aided Verification, volume 939 of LNCS, pages 267-278, Berlin, Heidelberg. Springer-Verlag.
  33. Wong-Toi, H. and Dill, D. L. (1991). Synthesizing processes and schedulers from temporal specifications. In Proceedings of the 2nd International Workshop on Computer Aided Verification, volume 531 of LNCS, pages 272-281, London, UK, UK. Springer-Verlag.
  34. Zhang, Q. and Andersen, M. E. (2007). Dose response relationship in anti-stress gene regulatory networks. PLoS Comput. Biol., 3(3).
Download


Paper Citation


in Harvard Style

Ito S., Hagihara S. and Yonezaki N. (2014). A Qualitative Framework for Analysing Homeostasis in Gene Networks . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 5-16. DOI: 10.5220/0004731400050016


in Bibtex Style

@conference{bioinformatics14,
author={Sohei Ito and Shigeki Hagihara and Naoki Yonezaki},
title={A Qualitative Framework for Analysing Homeostasis in Gene Networks},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={5-16},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004731400050016},
isbn={978-989-758-012-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - A Qualitative Framework for Analysing Homeostasis in Gene Networks
SN - 978-989-758-012-3
AU - Ito S.
AU - Hagihara S.
AU - Yonezaki N.
PY - 2014
SP - 5
EP - 16
DO - 10.5220/0004731400050016