Data based Modelling of Expired Airflow Clarifies Chronic Obstructive Pulmonary Disease

Topalovic Marko, Vasileios Exadaktylos, Jean-Marie Aerts, Thierry Troosters, Marc Decramer, Daniel Berckmans, Wim Janssens

Abstract

One of the major health challenges of the future is Chronic Obstructive Pulmonary Disease (COPD). It is characterized by airflow limitations, although current diagnosis does not give attention to the flow measurements. We aimed to develop a data-based model of the decline of the forced expiratory flow. Moreover, we analysed the relationship of model parameters with COPD presence and its severity. The data-based model was developed in 474 smoking individuals, who are at risk of having COPD, and have performed complete pulmonary function tests in order to identify whether the disease is present and at which stage. The time series of the decline of the flow was parameterised using the poles and steady state gain (SSG) of a second order transfer function model. These parameters were then linked with the presence of COPD. Observing SSG, median (IQR) in subjects with COPD was lower 3.9(2.7-5.6) compared to 8.2(7.1-9.3) in subjects without, (p<0.0001). Significant difference was also found when observing median (IQR) of two poles in subjects without disease were 0.9868(0.9810-0.9892) and 0.9333(0.9010-0.9529), respectively, compared to 0.9929(0.9901-0.9952) and 0.9082(0.8669-0.9398) in subjects with COPD (p<0.001 for both poles). Forced exhaled air can be used to expand understanding of the COPD. Moreover, the suggested parameterisation of the flow decline could be used to access COPD using spirometry.

References

  1. Agusti, A., Calverley, P. M., Celli, B., Coxson, H. O., Edwards, L. D., Lomas, D. A., MacNee, W., Miller, B. E., Rennard, S., Silverman, E. K., Tal-Singer, R., Wouters, E., Yates, J. C., & Vestbo, J. 2010. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir.Res., 11, 122 available from: PM:20831787.
  2. Amaral, J. L., Lopes, A. J., Jansen, J. M., Faria, A. C., & Melo, P. L. 2012. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease. Comput.Methods Programs Biomed., 105, (3) 183-193 available from: PM:22018532.
  3. Bass, H. 1973. The flow volume loop: normal standards and abnormalities in chronic obstructive pulmonary disease. Chest, 63, (2) 171-176 available from: PM:4688062.
  4. Bodduluri, S., Newell, J. D., Jr., Hoffman, E. A., & Reinhardt, J. M. 2013. Registration-based lung mechanical analysis of chronic obstructive pulmonary disease (COPD) using a supervised machine learning framework. Acad.Radiol., 20, (5) 527-536 available from: PM:23570934.
  5. Decramer, M., Janssens, W., & Miravitlles, M. 2012. Chronic obstructive pulmonary disease. Lancet, 379, (9823) 1341-1351 available from: PM:22314182.
  6. Dellaca, R. L., Santus, P., Aliverti, A., Stevenson, N., Centanni, S., Macklem, P.T., Pedotti, A., & Calverley, P.M. 2004. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur.Respir.J., 23, (2) 232-240 available from: PM:14979497.
  7. Fens, N., Zwinderman, A. H., van der Schee, M. P., de Nijs, S. B., Dijkers, E., Roldaan, A. C., Cheung, D., Bel, E. H., & Sterk, P. J. 2009. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am.J.Respir.Crit Care Med., 180, (11) 1076-1082 available from: PM:19713445.
  8. Garcia-Rio, F., Soriano, J. B., Miravitlles, M., Munoz, L., Duran-Tauleria, E., Sanchez, G., Sobradillo, V., & Ancochea, J. 2011. Overdiagnosing subjects with COPD using the 0.7 fixed ratio: correlation with a poor health-related quality of life. Chest, 139, (5) 1072- 1080 available from: PM:21183609.
  9. Healy, F., Wilson, A. F., & Fairshter, R. D. 1984. Physiologic correlates of airway collapse in chronic airflow obstruction. Chest, 85, (4) 476-481 available from: PM:6705575.
  10. Jayamanne, D. S., Epstein, H., & Goldring, R. M. 1980. Flow-volume curve contour in COPD: correlation with pulmonary mechanics. Chest, 77, (6) 749-757 available from: PM:7398386.
  11. Koulouris, N. G. & Hardavella, G. 2011. Physiological techniques for detecting expiratory flow limitation during tidal breathing. Eur.Respir.Rev., 20, (121) 147- 155 available from: PM:21881143.
  12. Lambrechts, D., Buysschaert, I., Zanen, P., Coolen, J., Lays, N., Cuppens, H., Groen, H. J., Dewever, W., van Klaveren, R. J., Verschakelen, J., Wijmenga, C., Postma, D. S., Decramer, M., & Janssens, W. 2010. The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am.J.Respir.Crit Care Med., 181, (5) 486-493 available from: PM:20007924.
  13. Ljung L. 1987. System Identification: Theory for the User Englewood Cliffs, NJ: Prentice-Hall.
  14. Mannino, D. M. & Buist, A.S. 2007. Global burden of COPD: risk factors, prevalence, and future trends. Lancet, 370, (9589) 765-773 available from: PM:17765526.
  15. Mathers, C. D. & Loncar, D. 2006. Projections of global mortality and burden of disease from 2002 to 2030. PLoS.Med., 3, (11) e442 available from: PM:17132052.
  16. Miller, M. R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Crapo, R., Enright, P., van der Grinten, C. P., Gustafsson, P., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., & Wanger, J. 2005. Standardisation of spirometry. Eur.Respir.J., 26, (2) 319-338 available from: PM:16055882.
  17. Miravitlles, M., Soler-Cataluna, J. J., Calle, M., & Soriano, J. B. 2013. Treatment of COPD by clinical phenotypes: putting old evidence into clinical practice. Eur.Respir.J., 41, (6) 1252-1256 available from: PM:23060631.
  18. Murray, C. J. & Lopez, A. D. 1997. Alternative projections of mortality and disability by cause 1990- 2020: Global Burden of Disease Study. Lancet, 349, (9064) 1498-1504 available from: PM:9167458.
  19. Papandrinopoulou, D., Tzouda, V., & Tsoukalas, G. 2012. Lung compliance and chronic obstructive pulmonary disease. Pulm.Med., 2012, 542769 available from: PM:23150821.
  20. Phillips, C. O., Syed, Y., Parthalain, N. M., Zwiggelaar, R., Claypole, T. C., & Lewis, K. E. 2012. Machine learning methods on exhaled volatile organic compounds for distinguishing COPD patients from healthy controls. J.Breath.Res., 6, (3) 036003 available from: PM:22759349.
  21. Quanjer, P. H., Tammeling, G. J., Cotes, J. E., Pedersen, O. F., Peslin, R., & Yernault, J. C. 1994. [Lung volumes and forced ventilatory flows. Work Group on Standardization of Respiratory Function Tests. European Community for Coal and Steel. Official position of the European Respiratory Society]. Rev.Mal Respir., 11 Suppl 3, 5-40 available from: PM:7973051.
  22. Rabe, K. F., Hurd, S., Anzueto, A., Barnes, P. J., Buist, S. A., Calverley, P., Fukuchi, Y., Jenkins, C., RodriguezRoisin, R., van, W. C., & Zielinski, J. 2007. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am.J.Respir.Crit Care Med., 176, (6) 532-555 available from: PM:17507545.
  23. Sorensen, L., Nielsen, M., Lo, P., Ashraf, H., Pedersen, J. H., & de, B. M. 2012. Texture-based analysis of COPD: a data-driven approach. IEEE Trans.Med.Imaging, 31, (1) 70-78 available from: PM:21859615.
  24. Taylor, C. J., Pedregal, D. J., Young, P. C., & Tych, W. 2007. Environmental time series analysis and forecasting with the Captain toolbox. Environmental Modelling & Software, 22, (6) 797-814.
  25. Wauters, E., Smeets, D., Coolen, J., Verschakelen, J., De, L. P., Decramer, M., Vansteenkiste, J., Janssens, W., & Lambrechts, D. 2011. The TERT-CLPTM1L locus for lung cancer predisposes to bronchial obstruction and emphysema. Eur.Respir.J., 38, (4) 924-931 available from: PM:21622582.
  26. WHO. World health statistics 2008. http://www.who.int/ whosis/whostat/EN_WHS08_Full.pdf. Accessed 2012.
  27. Young P. C. 1984. Recursive Estimation and Time-Series Analysis Berlin: Springer.
  28. Young, P. 1981. Parameter-Estimation for ContinuousTime Models - A Survey. Automatica, 17, (1) 23-39 available from: ISI:A1981LE26600003.
Download


Paper Citation


in Harvard Style

Marko T., Exadaktylos V., Aerts J., Troosters T., Decramer M., Berckmans D. and Janssens W. (2014). Data based Modelling of Expired Airflow Clarifies Chronic Obstructive Pulmonary Disease . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 5-12. DOI: 10.5220/0004735000050012


in Bibtex Style

@conference{biosignals14,
author={Topalovic Marko and Vasileios Exadaktylos and Jean-Marie Aerts and Thierry Troosters and Marc Decramer and Daniel Berckmans and Wim Janssens},
title={Data based Modelling of Expired Airflow Clarifies Chronic Obstructive Pulmonary Disease},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},
year={2014},
pages={5-12},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004735000050012},
isbn={978-989-758-011-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Data based Modelling of Expired Airflow Clarifies Chronic Obstructive Pulmonary Disease
SN - 978-989-758-011-6
AU - Marko T.
AU - Exadaktylos V.
AU - Aerts J.
AU - Troosters T.
AU - Decramer M.
AU - Berckmans D.
AU - Janssens W.
PY - 2014
SP - 5
EP - 12
DO - 10.5220/0004735000050012