Signal Quality in Dry Electrode EEG and the Relation to Skin-electrode Contact Impedance Magnitude

Alexandra-Maria Tautan, Vojkan Mihajlovic, Yun-Hsuan Chen, Bernard Grundlehner, Julien Penders, Wouter Serdijn

2014

Abstract

Current EEG research approaches are focusing on developing new dry electrode EEG (electroencephalogram) systems providing a high enough signal quality for a wide range of applications. This study proposes several parameters for evaluating signal quality of dry electrodes and relates the results to skin-electrode contact impedance magnitude values. The EEG recordings of a Ag/AgCl pinned electrode and a flexible polymer pinned electrode are evaluated through a comparison to conductive gel electrode recordings. The experimental setup was made up of two EEG acquisition systems connected in parallel. The protocol included open eyes, closed eyes and steady-state visually evoked potentials (SSVEP) sessions in both seated and walking in place conditions. The parameters used for evaluation were signal correlations, signal coherence and signal-to-noise ratios (SNRs). Results showed that the three proposed parameters provided equivalent outcome for signal quality estimation for the same recordings. There was no relation reported between the defined signal quality and the skin-electrode contact impedance in either dry or gel electrodes, although high impedance variations were present among subjects. However, larger impedance magnitude and impedance magnitude variations, and lower signal quality is observed for dry electrodes compared to gel ones.

References

  1. Acunzo, D., Mackenzie, G., and Rossum, M. v. (2012). Systematic biases in early ERP and ERF components as a result of high-pass filtering. Journal of Neuroscience Methods, 209:212-218.
  2. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10:433-436.
  3. Chen, Y.-H., de Beeck, M. O., Vanderheyden, Luc Mihajlovic, V., Grundlehner, B., and van Hoof, C. (2013). Comb-Shaped Polymer-Based Dry Electrodes for EEG/ECG Measurements with High User Comfort. In 35th Annual International IEEE EMBS Conference.
  4. Chi, Y., Wang, Y.-T., Wang, Y., Maier, C., Jung, T.-P., and Cauwenberghs, G. (2012). Dry and Noncontact EEG Sensors for Mobile Brain-Computer Interfaces. IEEE Transactions of Neural Systems and Rehabilitation Engineering, 20(2):228-235.
  5. Estepp, J., Monnin, J., Christensen, J., and Wilson, G. (2005). Evaluation of a Dry Electrode System for Electroencephalography: Applications for Psychophysiological Cognitive Workload Assessment. In Proceedings of the 11th International Conference on Human Computer Interaction, Las Vegas, Nevada, USA.
  6. Estepp, J. R., Christensen, J. C., Monnin, J. W., Davis, I. M., and Wilson, G. F. (2009). Validation of a Dry Electrode System for EEG. In Proceedings of the Human Factors and Ergonomics Society 53rd Annual Meeting, pages 1171-1175, San Antonio, Texas, USA.
  7. Ferree, T. C., Luu, P., Russell, G. S., and Tucker, D. M. (2001). Scalp electrode impedance, infection risk, and EEG data quality. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 112(3):536-44.
  8. Gargiulo, G., Calvo, R., Bifulco, P., Cesarelli, M., and Ohamed, A. (2010). A New EEG recording system for passive dry electrodes. Clinical Neurophysiology, 121:686-693.
  9. Guevara, M. A. and Corsi-Cabrera, M. (1996). EEG coherence or EEG correlation? International Journal of Psychophysiology, 23:145-153.
  10. Lin, C.-T., Wu, R.-C., Liang, S.-F., Chao, W.-H., Chen, Y.-J., and Hung, T.-P. (2005). EEG-Based Drowsiness Estimation for Safety Driving Using Idependent Component Analysis. IEEE Transactions on Circuits and Systems, 52(12):2726-2738.
  11. Mihajlovic, V., Garcia-Molina, G., and J., P. (2012). To What Extent Can Dry and Water-based EEG Electrodes Replace Conductive Gel Ones? In BioDevices conference, Vilamoura, Algarve, Portugal.
  12. Mihajlovic, V., Li, H., Grundlehner, B., Penders, J., and Schouten, A. (2013). Investigating the Impact of Force and Movements on Impedance Magnitude and EEG. In IEEE Engineering in Medicine and Biology Society, Okata, Japan.
  13. Minguez, J., Kubler, A., and Antelis, J. (2009). A Noninvasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE Transactions on Robotics, 25(3):614-627.
  14. Moriyama, T. S., Polanczyk, G., Caye, A., Banaschewski, T., Brandeis, D., and Rohde, L. (2012). Evidence-based information on the clinical use of neurofeedback for ADHD. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 9(3):588-98.
  15. Patki, S., Grundlehner, B., Verwegen, A., Mitra, S., Xu, J., Matsumoto, A., Yazicioglu, R., and Penders, J. (2012). Wireless EEG System with Real Time Impedance Monitoring and Active Electrodes. In IEEE Biomedical Circuits and Systems Conference, Hsinchu, Taiwan.
  16. Ruffini, G., Dunne, S., Fuentemilla, L., Grau, C., Farres, E., Marco-Pallares, J., Watts, P., and Silva, R. (2008). First Human Trials of a Dry Electrophysiology Sensor Using Carbon Nanotube Array Interface. Sensors and Actuators A: Physical, 144(2):275-279.
  17. Sellers, E., Turner, P., Samacki, W., McManus, T., Vaughan, T., and Mathews, R. (2009). A Novel Dry Electrode for Brain-Computer Interface. Human Computer Interaction Methods and Techniques Lecture Notes in Computer science, 5611:623-631.
  18. Teplan, M. . (2002). Fundamentals of EEG Measurement. Measurement Science Review, 2:Section 2.
  19. Ta?u¸tan, A.-M., Mihajlovic, V., Grundlehner, B., Penders, J., and Serdijn, W. (2013). Framework for Evaluating EEG Signal Quality of Dry Electrode Recordings. In IEEE Biomedical Circuits and Systems Conference, Rotterdam, The Netherlands.
  20. Zander, T. O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., Picht, B., and Nijboer, F. (2011). A dry EEG system for scientific research and brain-computer interfaces. Frontiers in Neuroscience, 5.
Download


Paper Citation


in Harvard Style

Tautan A., Mihajlovic V., Chen Y., Grundlehner B., Penders J. and Serdijn W. (2014). Signal Quality in Dry Electrode EEG and the Relation to Skin-electrode Contact Impedance Magnitude . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014) ISBN 978-989-758-013-0, pages 12-22. DOI: 10.5220/0004738700120022


in Bibtex Style

@conference{biodevices14,
author={Alexandra-Maria Tautan and Vojkan Mihajlovic and Yun-Hsuan Chen and Bernard Grundlehner and Julien Penders and Wouter Serdijn},
title={Signal Quality in Dry Electrode EEG and the Relation to Skin-electrode Contact Impedance Magnitude},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)},
year={2014},
pages={12-22},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004738700120022},
isbn={978-989-758-013-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)
TI - Signal Quality in Dry Electrode EEG and the Relation to Skin-electrode Contact Impedance Magnitude
SN - 978-989-758-013-0
AU - Tautan A.
AU - Mihajlovic V.
AU - Chen Y.
AU - Grundlehner B.
AU - Penders J.
AU - Serdijn W.
PY - 2014
SP - 12
EP - 22
DO - 10.5220/0004738700120022