Fast Optimum-Path Forest Classification on Graphics Processors

Marcos V. T. Romero, Adriana S. Iwashita, Luciene P. Papa, André N. Souza, João P. Papa

Abstract

Some pattern recognition techniques may present a high computational cost for learning samples’ behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies.

References

  1. Allène, C., Audibert, J. Y., Couprie, M., Cousty, J., and Keriven, R. (2007). Some links between min-cuts, optimal spanning forests and watersheds. In Proceedings of the International Symposium on Mathematical Morphology, pages 253-264. MCT/INPE.
  2. Catanzaro, B., Sundaram, N., and Keutzer, K. (2008). Fast support vector machine training and classification on graphics processors. In Proceedings of the 25th international conference on Machine learning, pages 104- 111, New York, NY, USA. ACM.
  3. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms. The MIT Press, 2 edition.
  4. Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2nd Edition). Wiley-Interscience.
  5. Gainaru, A., Slusanschi, E., and Trausan-Matu, S. (2011). Mapping data mining algorithms on a GPU architecture: a study. In Proceedings of the 19th international conference on Foundations of intelligent systems, ISMIS'11, pages 102-112, Berlin, Heidelberg. Springer-Verlag.
  6. Harris, M. (2010). Optimizing parallel reduction in CUDA.
  7. Jang, H., Park, A., and Jung, K. (2008). Neural network implementation using cuda and openmp. In DICTA 7808: Proceedings of the 2008 Digital Image Computing: Techniques and Applications, pages 155-161, Washington, DC, USA. IEEE Computer Society.
  8. Kaewpijit, S., Moigne, J., and El-Ghazawi, T. (2003). Automatic reduction of hyperspectral imagery using wavelet spectral analysis. IEEE Transactions on Geoscience and Remote Sensing, 41(4):863-871.
  9. Landgrebe, D. (2005). Signal Theory Methods in Multispectral Remote Sensing. Wiley, Newark, NJ.
  10. Oh, K. and Jung, K. (2004). GPU implementation of neural networks. Pattern Recognition, 37(6):1311-1314.
  11. Papa, J. P., Falca˜o, A. X., Albuquerque, V. H. C., and Tavares, J. M. R. S. (2012). Efficient supervised optimum-path forest classification for large datasets. Pattern Recognition, 45(1):512-520.
  12. Papa, J. P., Falca˜o, A. X., and Suzuki, C. T. N. (2009). Supervised pattern classification based on optimum-path forest. International Journal of Imaging Systems and Technology, 19(2):120-131.
Download


Paper Citation


in Harvard Style

V. T. Romero M., S. Iwashita A., P. Papa L., N. Souza A. and P. Papa J. (2014). Fast Optimum-Path Forest Classification on Graphics Processors . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 627-631. DOI: 10.5220/0004740406270631


in Bibtex Style

@conference{visapp14,
author={Marcos V. T. Romero and Adriana S. Iwashita and Luciene P. Papa and André N. Souza and João P. Papa},
title={Fast Optimum-Path Forest Classification on Graphics Processors},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={627-631},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004740406270631},
isbn={978-989-758-004-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - Fast Optimum-Path Forest Classification on Graphics Processors
SN - 978-989-758-004-8
AU - V. T. Romero M.
AU - S. Iwashita A.
AU - P. Papa L.
AU - N. Souza A.
AU - P. Papa J.
PY - 2014
SP - 627
EP - 631
DO - 10.5220/0004740406270631