A Dense Map Building Approach from Spherical RGBD Images

Tawsif Gokhool, Maxime Meilland, Patrick Rives, Eduardo Fernández-Moral

Abstract

Visual mapping is a required capability for practical autonomous mobile robots where there exists a growing industry with applications ranging from the service to industrial sectors. Prior to map building, Visual Odometry(VO) is an essential step required in the process of pose graph construction. In this work, we first propose to tackle the pose estimation problem by using both photometric and geometric information in a direct RGBD image registration method. Secondly, the mapping problem is tackled with a pose graph representation, whereby, given a database of augmented visual spheres, a travelled trajectory with redundant information is pruned out to a skeletal pose graph. Both methods are evaluated with data acquired with a recently proposed omnidirectional RGBD sensor for indoor environments.

References

  1. Besl, P. and McKay, N. (1992). A method for registration of 3-D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI, 14(2):239-256.
  2. Blanco, J.-L. (2010). A tutorial on se(3) transformation parameterizations and on-manifold optimization. Technical report, University of Malaga.
  3. Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple range images. Image and vision computing, 10(3):145-155.
  4. Dellaert, F. and Collins, R. (1999). Fast Image-based tracking by selective pixel integration. In Proc. of the ICCV Workshop on frame-rate vision.
  5. Fraundorfer, F. and Scaramuzza, D. (2012). Visual Odometry: PartII: Matching, Robustness, Optimisation and Applications. IEEE Robotics and Automation magazine, 19(2):78-90.
  6. Harville, M., Rahimi, A., Darrell, T., Gordon, G., and Woodfill, J. (1999). 3D Pose Tracking with Linear Depth and Brightness Constraints. In IEEE Intl. Conf. on Computer Vision, ICCV, volume 1, pages 206-213.
  7. Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). RGB-D Mapping: Using Kinect-Style Depth Cameras for Dense 3D Modeling of Indoor Environments . International Journal of Robotics Research, 31(5):647-663.
  8. Huber, P. (1981). Robust Statistics. New York, Wiley.
  9. Kerl, C., Sturm, J., and Cremers, D. (2013). Dense Visual SLAM for RGB-D Cameras. In Proc. of the Int. Conf. on Intelligent Robot Systems (IROS), Tokyo, Japan.
  10. Kim, A. and Eustice, R. (2013). Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3):719- 733.
  11. Konolige, K. and Agrawal, M. (2008). FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping. IEEE Transaction on Robotics, 24(5).
  12. Konolige, K. and Bowman, J. (2009). Towards lifelong Visual Maps. In International Conference on Intelligent Robots and Systems.
  13. Kretzschmar, H., Grisetti, G., and Stachniss, C. (2010). Lifelong map learning for graph-based slam in static Meilland, M., Comport, A., and Rives, P. (2010). A spherical robot-centered representation for urban navigation. In Proc. of the Int. Conf. on Intelligent Robot Systems (IROS), Taipei, Taiwan.
  14. Meilland, M., Comport, A. I., and Rives, P. (2011). Dense visual mapping of large scale environments for realtime localisation. In IEEE International Conference on Intelligent Robots and Systems, pages 4242 -4248.
  15. Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011). KinectFusion: Real-Time Dense Surface Mapping and Tracking. In IEEE Intl. Symp. on Mixed and Augmented Reality, ISMAR.
  16. Rahimi, A., Morency, L., and Darrell, T. (2001). Reducing Drift in Parametric Motion Tracking. In IEEE Intl. Conf. on Computer Vision, ICCV.
  17. Royer, E., Lhuillier, M., M., D., and J-M., L. (2007). Monocular vision for mobile robot localization and autonomous navigation. International Journal of Computer Vision, 74(3):237 - 260.
  18. Strasdat, H., Montiel, J., and Davison, A. (2010). Scale Drift-Aware Large Scale Monocular SLAM. In Robots Science and Systems, RSS.
  19. Tykkälä, T., Audras, C., and Comport, A. (2011). Direct Iterative Closest Point for Real-time Visual Odometry. In IEEE Intl. Conf. on Computer Vision Workshops, ICCV.
  20. Tykkälä, T., Hartikainen, H., Comport, A., and Kämäräinen, J.-K. (2013). RGB-D tracking and reconstruction for TV broadcasts. In Int. Conf. on Computer Vision Theory and Applications (VISAPP), Barcelona, Spain.
  21. Wang, Q., Zhang, W., and Tang, X. (2006). Real Time Bayesian 3-D Pose Tracking. IEEE Transactions on Circuits and Systems for Video Technology, 16(12):1533-1541.
  22. Zhang, Z. (1992). On local matching of free-form curves. In Proc. of British Machine Vision Conference, BMVC, pages 347-356.
Download


Paper Citation


in Harvard Style

Gokhool T., Meilland M., Rives P. and Fernández-Moral E. (2014). A Dense Map Building Approach from Spherical RGBD Images . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 656-663. DOI: 10.5220/0004745406560663


in Bibtex Style

@conference{visapp14,
author={Tawsif Gokhool and Maxime Meilland and Patrick Rives and Eduardo Fernández-Moral},
title={A Dense Map Building Approach from Spherical RGBD Images},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={656-663},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004745406560663},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - A Dense Map Building Approach from Spherical RGBD Images
SN - 978-989-758-009-3
AU - Gokhool T.
AU - Meilland M.
AU - Rives P.
AU - Fernández-Moral E.
PY - 2014
SP - 656
EP - 663
DO - 10.5220/0004745406560663