Knowledge-based Subtractive Integration of mRNA and miRNA Expression Profiles to Differentiate Myelodysplastic Syndrome

Jiří Kléma, Jan Zahálka, Michael Anděl, Zdeněk Krejčík

Abstract

The goal of our work is to integrate conventional mRNA expression profiles with miRNA expressions using the knowledge of their validated or predicted interactions in order to improve class prediction in genetically determined diseases. The raw mRNA and miRNA expression features become enriched or replaced by new aggregated features that model the mRNA-miRNA interaction. The proposed subtractive integration method is directly motivated by the inhibition/degradation models of gene expression regulation. The method aggregates mRNA and miRNA expressions by subtracting a proportion of miRNA expression values from their respective target mRNAs. The method is used to model the outcome or development of myelodysplastic syndrome, a blood cell production disease often progressing to leukemia. The reached results demonstrate that the integration improves classification performance when dealing with mRNA and miRNA profiles of comparable predictive power.

References

  1. Ande?l, M., Kléma, J., and Krejc?ík, Z. (2013). Integrating mRNA and miRNA expressions with interaction knowledge to predict myelodysplastic syndrome. In ITAT 2013: Information Technologies - Applications and Theory, Workshop on Bioinformatics in Genomics and Proteomics, pages 48-55.
  2. Brewster, J. L., Beason, K. B., Eckdahl, T. T., et al. (2004). The microarray revolution: Perspectives from educators. Biochem Mol Biol Educ, 32(4):217-27.
  3. Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 10(10):704-14.
  4. Dostalova Merkerova, M., Krejcik, Z., Votavova, H., Belickova, M., Vasikova, A., and Cermak, J. (2011). Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet, 19(3):313-9.
  5. Dweep, H., Sticht, C., Pandey, P., et al. (2011). miRWalk - Database: Prediction of possible miRNA binding sites by ”walking” the genes of three genomes. J Biomed Inform, 44(5):839-47.
  6. Eckart, C. and Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1:211-8.
  7. Fabian, M. R. and Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol, 19(6):586-93.
  8. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422.
  9. Huang, G. T., Athanassiou, C., and Benos, P. V. (2011). mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic acids res, 39(Web Server issue):W416-23.
  10. Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In European Conference on Machine Learning (ECML), pages 137-42, Berlin. Springer.
  11. Kim, D., Shin, H., Song, Y. S., et al. (2012). Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J Biomed Inform, 45(6):1191-8.
  12. Kozomara, A. and Griffiths-Jones, S. (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 39(Database-Issue):152-7.
  13. Krek, A., Grün, D., Poy, M. N., et al. (2005). Combinatorial microRNA target predictions. Nature genetics, 37(5):495-500.
  14. Lanza, G., Ferracin, M., Gafà, R., et al. (2007). mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer, 6:54+.
  15. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5):843-54.
  16. Lewis, B. P., Shih, I.-h. H., Jones-Rhoades, M. W., et al. (2003). Prediction of mammalian microRNA targets. Cell, 115(7):787-98.
  17. Li, W., Zhang, S.-H., et al. (2012). Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics, 28(19):2458-66.
  18. Morin, R., Bainbridge, M., Fejes, A., et al. (2008). Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques, 45(1):81-94.
  19. Peng, X., Li, Y., Walters, K. A., et al. (2009). Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics, 10(1):373+.
  20. Pollack, J. R., Sørlie, T., Perou, C. M., et al. (2002). Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A, 99(20):12963-8.
  21. Rhyasen, G. W. and Starczynowski, D. T. (2012). Deregulation of microRNAs in myelodysplastic syndrome. Leukemia, 26(1):13-22.
  22. Sayed, D. and Abdellatif, M. (2011). MicroRNAs in development and disease. Physiol Rev, 91(3):827-87.
  23. Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular subsequences. J Mol Biol, 147(1):195-7.
  24. Stranger, B. E., Forrest, M. S., Dunning, M., et al. (2007). Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 315(5813):848-53.
  25. Tan Gana, N. H., Victoriano, A. F., and Okamoto, T. (2012). Evaluation of online miRNA resources for biomedical applications. Genes to Cells, 17(1):11-27.
  26. Tran, D. H., Satou, K., and Ho, T. B. (2008). Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinformatics, 9(S-12).
  27. Vas?íková, A., Be?lic?ková, M., Budinská, E., et al. (2010). A distinct expression of various gene subsets in cd34+ cells from patients with early and advanced myelodysplastic syndrome. Leuk Res, 34(12):1566-72.
  28. Wang, X. and Naqa, I. M. E. (2008). Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics, 24(3):325-32.
  29. Witten, D. M. and Tibshirani, R. J. (2009). Extensions of sparse canonical correlation analysis with applications to genomic data. Stat Appl Genet Mol Biol, 8(1):28.
  30. Zhang, S.-H., Li, Q., et al. (2011). A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 27(13):401-409.
Download


Paper Citation


in Harvard Style

Kléma J., Zahálka J., Anděl M. and Krejčík Z. (2014). Knowledge-based Subtractive Integration of mRNA and miRNA Expression Profiles to Differentiate Myelodysplastic Syndrome . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 31-39. DOI: 10.5220/0004752200310039


in Bibtex Style

@conference{bioinformatics14,
author={Jiří Kléma and Jan Zahálka and Michael Anděl and Zdeněk Krejčík},
title={Knowledge-based Subtractive Integration of mRNA and miRNA Expression Profiles to Differentiate Myelodysplastic Syndrome},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={31-39},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004752200310039},
isbn={978-989-758-012-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - Knowledge-based Subtractive Integration of mRNA and miRNA Expression Profiles to Differentiate Myelodysplastic Syndrome
SN - 978-989-758-012-3
AU - Kléma J.
AU - Zahálka J.
AU - Anděl M.
AU - Krejčík Z.
PY - 2014
SP - 31
EP - 39
DO - 10.5220/0004752200310039