Visual Exploration of Relationships between Document Clusters

Ilir Jusufi, Andreas Kerren, Jiayi Liu, Björn Zimmer


The visualization of networks with additional attributes attached to the network elements is one of the ongoing challenges in the information visualization domain. Such so-called multivariate networks regularly appear in various application fields, for instance, in data sets which describe friendship networks or co-authorship networks. Here, we focus on networks that are based on text documents, i.e., the network nodes represent documents and the edges show relationships between them. Those relationships can be derived from common topics or common co-authors. Attached attributes may be specific keywords (topics), keyword frequencies, etc. The analysis of such multivariate networks is challenging, because a deeper understanding of the data provided depends on effective visualization and interaction techniques that are able to bring all types of information together. In addition, automatic analysis methods should be used to support the analysis process of potentially large amounts of data. In this paper, we present a visualization approach that tackles those analysis problems. Our implementation provides a combination of new techniques that shows intra-cluster and inter-cluster relations while giving insight into the content of the cluster attributes. Hence, it facilitates the interactive exploration of the networks under consideration by showing the relationships between node clusters in context of network topology and multivariate attributes.


  1. Archambault, D., Munzner, T., and Auber, D. (2008). GrouseFlocks: Steerable exploration of graph hierarchy space. Visualization and Computer Graphics, IEEE Transactions on, 14(4):900 -913.
  2. Archambault, D., Munzner, T., and Auber, D. (2009). TugGraph: Path-preserving hierarchies for browsing proximity and paths in graphs. In Visualization Symposium, 2009. PacificVis 7809. IEEE Pacific, pages 113 -120.
  3. Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., and Fekete, J.-D. (2010). GraphDice: A system for exploring multivariate social networks. Computer Graphics Forum (Proc. EuroVis 2010), 29(3):863- 872.
  4. Borisjuk, L., Hajirezaei, M.-R., Klukas, C., Rolletschek, H., and Schreiber, F. (2005). Integrating data from biological experiments into metabolic networks with the dbe information system. In Silico Biol, 5(2):93-102.
  5. Dunne, C., Riche, N. H., Lee, B., Metoyer, R., and Robertson, G. (2012). GraphTrail: Analyzing large multivariate, heterogeneous networks while supporting exploration history. In Proceedings of the ACM Conference on Human Factors in Computer Systems, pages 1663-1672.
  6. Eick, S. G. (1994). Data visualization sliders. In Proceedings of the 7th annual ACM symposium on User interface software and technology, UIST 7894, pages 119- 120, New York, NY, USA. ACM.
  7. Elmqvist, N. and Ebert, D. S. (2011). WordBridge: Using composite tag clouds in node-link diagrams for visualizing content and relations in text corpora. 2011 44th Hawaii International Conference on System Sciences, pages 1-8.
  8. Farin, G. (2002). Curves and Surfaces for CAGD: A Practical Guide. Morgan-Kaufmann, 5th edition.
  9. Ghani, S., Chul Kwon, B., Lee, S., Yi, J., and Elmqvist, N. (2013). Visual analytics for multimodal social network analysis: A design study with social scientists. In IEEE Transactions on Visualization and Computer Graphics.
  10. Henry, N., Fekete, J.-D., and McGuffin, M. J. (2007). NodeTrix: a hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics, 13:1302-1309.
  11. Jigsaw (2011). Visual Analytics for Exploring and Understanding Document Collections., last accessed: 2013-02-15.
  12. Jusufi, I., Dingjie, Y., and Kerren, A. (2010). The network lens: Interactive exploration of multivariate networks using visual filtering. In Information Visualisation (IV), 2010 14th International Conference, pages 35 - 42.
  13. Jusufi, I., Kerren, A., and Zimmer, B. (2013). Multivariate network exploration with JauntyNets. In Proceedings of the 17th International Conference on Information Visualisation (IV 7813), pages 19-27.
  14. Kar, G., Madden, B., and Gilbert, R. (1988). Heuristic layout algorithms for network management presentation services. Network, IEEE, 2(6):29-36.
  15. Kaser, O. and Lemire, D. (2007). Tag-cloud drawing: Algorithms for cloud visualization. Proceedings of Tagging and Metadata for Social Information Organization (WWW 7807).
  16. Kerren, A., Kyusakova, M., and Paradis, C. (2012). From culture to text to interactive visualization of wine reviews. In Marchese, F. T. and Banissi, E., editors, Knowledge Visualization Currents: From Text to Art to Culture, chapter 5, pages 85-110. Springer, Oxford.
  17. Kerren, A., Purchase, H., and Ward, M. O. (2013). Information Visualization - Towards Multivariate Network Visualization (Dagstuhl Seminar 13201). Dagstuhl Reports, 3(5):19-42.
  18. Kerren, A. and Schreiber, F. (2012). Toward the role of interaction in visual analytics. In Proceedings of the Winter Simulation Conference, WSC 7812, pages 420:1-420:13. Winter Simulation Conference.
  19. Koh, K., Lee, B., Kim, B., and Seo, J. (2010). ManiWordle: Providing flexible control over Wordle. IEEE Transactions on Visualization and Computer Graphics, 16:1190-1197.
  20. Lee, H., Kihm, J., Choo, J., Stasko, J., and Park, H. (2012). iVisClustering: An interactive visual document clustering via topic modeling. Computer Graphics Forum, 31:1155-1164.
  21. Liu, J. (2013). Visualization of relationships in clustered text data. Master's thesis, Linnaeus University, Department of Computer Science, Växjö, Sweden.
  22. Mirkin, B. (2005). Clustering for Data Mining: A Data Recovery Approach. Chapman & Hall/CRC, Boca Raton, FL, USA.
  23. Paulovich, F. V., Toledo, F. M. B., Telles, G. P., Minghim, R., and Nonato, L. G. (2012). Semantic wordification of document collections. Comp. Graph. Forum, 31(3):1145-1153.
  24. Pretorius, A. J. and van Wijk, J. J. (2007). Bridging the semantic gap: Visualizing transition graphs with userdefined diagrams. Computer Graphics and Applications, IEEE, 27(5):58 -66.
  25. Pretorius, A. J. and van Wijk, J. J. (2008). Visual inspection of multivariate graphs. Comput. Graph. Forum, 27(3):967-974.
  26. Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information visualizations. In Proceedings of the IEEE Symposium on Visual Languages, 1996, pages 336-343.
  27. Shneiderman, B. and Aris, A. (2006). Network visualization by semantic substrates. IEEE Transactions on Visualization and Computer Graphics, 12:733-740.
  28. Trickl (2011). trickl-cluster. trickl/trickl-cluster, last accessed: 2013-02- 15.
  29. Viegas, F., Wattenberg, M., and Feinberg, J. (2009). Participatory visualization with Wordle. IEEE Transactions on Visualization and Computer Graphics, 15:1137- 1144.
  30. Wattenberg, M. (2006). Visual exploration of multivariate graphs. In CHI 7806: Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 811-819, New York, NY, USA. ACM.
  31. Williamson, C. and Shneiderman, B. (1992). The dynamic homefinder: evaluating dynamic queries in a realestate information exploration system. In Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR 7892, pages 338-346, New York, NY, USA. ACM.
  32. Wu, Y. and Takatsuka, M. (2006). Visualizing multivariate network on the surface of a sphere. In Asia Pacific Symposium on Information Visualisation, pages 77- 83.

Paper Citation

in Harvard Style

Jusufi I., Kerren A., Liu J. and Zimmer B. (2014). Visual Exploration of Relationships between Document Clusters . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 195-203. DOI: 10.5220/0004754301950203

in Bibtex Style

author={Ilir Jusufi and Andreas Kerren and Jiayi Liu and Björn Zimmer},
title={Visual Exploration of Relationships between Document Clusters},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},

in EndNote Style

JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - Visual Exploration of Relationships between Document Clusters
SN - 978-989-758-005-5
AU - Jusufi I.
AU - Kerren A.
AU - Liu J.
AU - Zimmer B.
PY - 2014
SP - 195
EP - 203
DO - 10.5220/0004754301950203