An Overview of OR Models for Biomass Supply Chains

Birome Holo Ba, Christian Prins, Caroline Prodhon


The biorefineries of the future will critically depend on efficient supply chains to guarantee continuous flows of biomass while minimizing logistic costs and environmental impacts. OR techniques can be very useful to help decision makers to model, evaluate and optimize such complex and large-scale supply chains at the design stage. This paper provides an overview of the OR models for this recent research domain and proposes a core-model (mathematical program) for the tactical decision level.


  1. Brechbill, S. C., Wallace, E. T., Klein, E. I., 2011. The Economics of Biomass Collection and Transportation and Its Supply to Indiana Cellulosic and Electric Utility Facilities. BioEnergy Research, 4, 141-152
  2. Delivand, M. K., Barz, M., Gheewala, S. H., 2011. Logistics cost analysis of rice straw for biomass power generation in Thailand. Energy, 36(3), pp. 1435-1441.
  3. Ebadian, M., Sowlati, T., Sokhansanj, S., Stumborg, M., Townley-Smith, L., 2011. A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosystems Engineering, 110(3), 280-290.
  4. Eksioglu, S., Acharya, A., Leightley, L. E., Arora, S., 2009. Analyzing the design and management of biomass-to-biorefinery supply chain. Computers & Industrial Engineering, 57(4), 1342-52.
  5. Eksioglu, S., Li, S., Zhang, S., Sokhansanj, S., Petrolia, D., 2010. Analyzing the Impact of Intermodal Facilities to the Design and Management of Biofuels Supply Chain. Transportation Research Record, 2191, 144-151.
  6. European Commission. Proposal for a Directive of the european parliament and of the council on the promotion of the use of energy from renewable sources. COM(2008) 19 final. Brussels.
  7. Feng, Y., D'Amours, S., Lebel, L., Nourelfath, M., 2010. Integrated bio-refinery and forest products supply chain network design using mathematical programming approach. Report 2010-50, CIRRELT, Montréal.
  8. Frombo, F., Minciardi, R., Robba, M., Rosso, F., Sacile, R.., 2009. Planning woody biomass logistics for energy production: A strategic decision model. Biomass and Bioenergy, 33(3), 372-383.
  9. Han, S. K., Murphy, G. E., 2012. Solving a woody biomass truck scheduling problem for a transport company in Western Oregon, USA. Biomass and Bioenergy, 44, 47-55.
  10. Mani, S., Tabil, L. G., Sokhansanj, S., 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7), 648-654.
  11. Ravula, P., Grisso, R., Cundiff, J., 2008. Cotton logistics as a model for a biomass transportation system. Biomass and Bioenergy, 32(4), 314-32.
  12. Santibañez-Aguilar, J. E., González-Campos, J. B, PonceOrtega, J. M., Serna-González, M., El-Halwagi, M. M., 2011. Optimal planning of a biomass conversion system considering economic and environmental aspects. Industrial & Engineering Chemistry Research, 50(14), 8558-8570.
  13. Shabani, N., Sowlati, T., 2013. A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Applied Energy, 104, 353-361.
  14. Sokhansanj, S., Kumar, A., Turhollow, A., 2006. Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass and Bioenergy, 30(10), 838-847.
  15. Sokhansanj, S., Mani, S., Turhollow, A., Kumar, A., Bransby, B., Lynd, L., Laser, M., 2009. Large scale production, harvest and logistics of switchgrass (Panicum vigatum L.) - current technology and envisioning a mature technology. Biofuel, Bioproduct, Biorefinery, 3, 124-141.
  16. Stephen, J. D., Sokhansanj, S., Bi, X., Sowlati, S., Kloeck, T., Townley-Smith, L., Stumborg, M. A., 2010. The impact of agricultural residue yield range on the delivered cost to a biorefinery in the Peace River region of Alberta, Canada. Biosystems Engineering, 105(3), 298-305.
  17. Tembo, G., Epplin, F. M., Huhnke, R. L., 2003. Integrative investment appraisal of a lignocellulosic biomass-to-ethanol industry. Journal of Agricultural and Resource Economics, 28(3), 611-633
  18. Vera, D., Carabias, J., Jurado, F., Nicolás, R., 2010. A honey bee foraging approach for optimal location of a biomass power plant. Applied Energy, 87(7), 2119-27.
  19. Zhang, J., Osmani, A., Awudu, I., Gonela, V., 2013. An integrated optimization model for switchgrass-based bioethanol supply chain. Applied Energy, 102, 1205- 17.
  20. Zhang, F., Johnson, D. M., Johnson, M. A., 2012. Development of a simulation model of biomass supply chain for biofuel production. Renewable Energy, 44, 380-391.
  21. Zhu, X., Li, X., Yao, Q., Chen, Y., 2011. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry. Bioresource Technology, 102(2), 1344-51.
  22. Zhu, X., Yao, Q., 2011. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks. Bioresource Technology, 102(23), 10936- 10945.

Paper Citation

in Harvard Style

Ba B., Prins C. and Prodhon C. (2014). An Overview of OR Models for Biomass Supply Chains . In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-017-8, pages 174-182. DOI: 10.5220/0004777001740182

in Bibtex Style

author={Birome Holo Ba and Christian Prins and Caroline Prodhon},
title={An Overview of OR Models for Biomass Supply Chains},
booktitle={Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},

in EndNote Style

JO - Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - An Overview of OR Models for Biomass Supply Chains
SN - 978-989-758-017-8
AU - Ba B.
AU - Prins C.
AU - Prodhon C.
PY - 2014
SP - 174
EP - 182
DO - 10.5220/0004777001740182