A Computational Study to Identify TP53 and SREBF2 as Regulation Mediators of miR-214 in Melanoma Progression

Gianfranco Politano, Alfredo Benso, Stefano Di Carlo, Francesca Orso, Alessandro Savino, Daniela Taverna

Abstract

In the complex world of post-transcriptional regulation, miR-214 is known to control in vitro tumor cell movement and survival to anoikis, as well as in vivo malignant cell extravasation from blood vessels and lung metastasis formation. miR-214 has also been found to be highly expressed in human melanomas, and to directly and indirectly regulate several genes involved in tumor progression and in the establishment of distant metastases (Penna et al., 2011). In this work, we exploit a computational pipeline integrating data from multiple online data repositories to identify the presence of transcriptional or post-transcriptional regulatory modules involving miR-214 and a set of 73 previously identified miR-214 regulated genes. We identified 27 putative regulatory modules involving miR-214, NFKB1, SREBPF2, miR-33a and 9 out of the 73 miR-214 modulated genes (ALCAM, POSTN, TFAP2A, ADAM9, NCAM1, SEMA3A, PVRL2, JAG1, EGFR1). As a preliminary experimental validation we focused on 9 out of the 27 identified regulatory modules that involve two main players, miR-33a and SREBF2. The results confirm the importance of the predictions obtained with the presented computational approach.

References

  1. Beezhold, K. J., Castranova, V., and Chen, F. (2010). Review microprocessor of microRNAs: regulation and potential for therapeutic intervention. Molecular Cancer, 9(134).
  2. Benso, A., Di Carlo, S., Politano, G., and Savino, A. (2013). A new mirna motif protects pathways' expression in gene regulatory networks. In Proceedings IWBBIO 2013: International Work-Conference on Bioinformatics and Biomedical Engineering, pages 377-384.
  3. Betel, D., Koppal, A., Agius, P., Sander, C., and Leslie, C. (2010). Comprehensive modeling of microrna targets predicts functional non-conserved and non-canonical sites. Genome Biol, 11(8):R90.
  4. Betel, D., Wilson, M., Gabow, A., Marks, D. S., and Sander, C. (2008). The microRNA.org resource: targets and expression. Nucleic Acids Res, 36(Database issue):D149-53.
  5. Bookout, A. L. and Mangelsdorf, D. J. (2003). Quantitative real-time pcr protocol for analysis of nuclear receptor signaling pathways. Nuclear receptor signaling, 1.
  6. Chen, Y.-A., Tripathi, L. P., and Mizuguchi, K. (2011). Targetmine, an integrated data warehouse for candidate gene prioritisation and target discovery. PLoS ONE, 6(3):e17844.
  7. Di Carlo, S., Politano, G., Savino, A., and Benso, A. (2013). A systematic analysis of a mi-RNA inter-pathway regulatory motif. Journal of clinical bioinformatics, 3(20).
  8. Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A., and Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research, 34(suppl 1):D140-D144.
  9. John, B., Enright, A., Aravin, A., Tuschl, T., Sander, C., and Marks, D. (2004). Human microRNA targets. PLoS biology, 2(11):e363.
  10. Linhart, C., Halperin, Y., and Shamir, R. (2008). Transcription factor and microrna motif discovery: the amadeus platform and a compendium of metazoan target sets. Genome research, 18(7):1180-1189.
  11. Najafi-Shoushtari, S. H., Kristo, F., Li, Y., Shioda, T., Cohen, D. E., Gerszten, R. E., and Näär, A. M. (2010). Microrna-33 and the srebp host genes cooperate to control cholesterol homeostasis. Science, 328(5985):1566-1569.
  12. NCBI (2013). Entrez programming utilities help. http:// www.ncbi.nlm.nih.gov/books/NBK25501.
  13. Penna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., Poliseno, L., Haimovic, A., OsellaAbate, S., De Pittà, C., et al. (2011). microrna214 contributes to melanoma tumour progression through suppression of tfap2c. The EMBO journal, 30(10):1990-2007.
  14. Penna, E., Orso, F., Cimino, D., Vercellino, I., Grassi, E., Quaglino, E., Turco, E., and Taverna, D. (2013). mir214 coordinates melanoma progression by upregulating alcam through tfap2 and mir-148b downmodulation. Cancer research, 73(13):4098-4111.
  15. Rice, S. J., Lai, S.-C., Wood, L. W., Helsley, K. R., Runkle, E. A., Winslow, M. M., and Mu, D. (2013). Microrna33a mediates the regulation of high mobility group at-hook 2 gene (hmga2) by thyroid transcription factor 1 (ttf-1/nkx2-1). Journal of Biological Chemistry, 288(23):16348-16360.
  16. The Mizuguchi Laboratory (2013). Targetmine. http:// targetmine.nibio.go.jp/.
  17. Tu, K., Yu, H., Hua, Y.-J., Li, Y.-Y., Liu, L., Xie, L., and Li, Y.-X. (2009). Combinatorial network of primary and secondary microrna-driven regulatory mechanisms. Nucleic acids research, 37(18):5969-5980.
  18. Wasserman Lab (2012). Transcription factor encyclopedia (TFe). http://www.cisreg.ca/cgi-bin/tfe/home.pl.
  19. Xu, L., Shen, S. S., Hoshida, Y., Subramanian, A., Ross, K., Brunet, J.-P., Wagner, S. N., Ramaswamy, S., Mesirov, J. P., and Hynes, R. O. (2008). Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases. Molecular Cancer Research, 6(5):760-769.
  20. Yuan, X., Liu, C., Yang, P., He, S., Liao, Q., Kang, S., and Zhao, Y. (2009). Clustered micrornas' coordination in regulating protein-protein interaction network. BMC systems biology, 3(65).
  21. Zhao, M., Sun, J., and Zhao, Z. (2013). Synergetic regulatory networks mediated by oncogene-driven micrornas and transcription factors in serous ovarian cancer. Molecular BioSystems, 9(12):3187-3198.
Download


Paper Citation


in Harvard Style

Politano G., Benso A., Di Carlo S., Orso F., Savino A. and Taverna D. (2014). A Computational Study to Identify TP53 and SREBF2 as Regulation Mediators of miR-214 in Melanoma Progression . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 49-56. DOI: 10.5220/0004799500490056


in Bibtex Style

@conference{bioinformatics14,
author={Gianfranco Politano and Alfredo Benso and Stefano Di Carlo and Francesca Orso and Alessandro Savino and Daniela Taverna},
title={A Computational Study to Identify TP53 and SREBF2 as Regulation Mediators of miR-214 in Melanoma Progression},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={49-56},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004799500490056},
isbn={978-989-758-012-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - A Computational Study to Identify TP53 and SREBF2 as Regulation Mediators of miR-214 in Melanoma Progression
SN - 978-989-758-012-3
AU - Politano G.
AU - Benso A.
AU - Di Carlo S.
AU - Orso F.
AU - Savino A.
AU - Taverna D.
PY - 2014
SP - 49
EP - 56
DO - 10.5220/0004799500490056