Modeling of Neuronal Population Activation under Electroconvulsive Therapy

Fadi N. Karameh, Mohamad Awada, Firas Mourad, Karim Zahed, Ibrahim Abou-Faycal, Ziad Nahas


Electroconvulsive therapy (ECT) is a procedure that involves the induction of seizures in the brain of patients with severe psychiatric disorders. The efficacy and therapeutic outcome of electrically-induced seizures is dependent upon both the stimulus intensity and the electrode placement over the scalp, with potentially significant memory loss as side effect. Over the years, ECT modeling aimed to understand current propagation in the head medium with increasingly realistic geometry and conductivity descriptions. The utility of these models remain limited since seizure propagation in the active neural tissue has largely been ignored. Accordingly, a modeling framework that combines head conductivity models with active neural models to describe observed EEG signals under ECT is highly desirable. We present herein a simplified multi-area active neural model that describes (i) the transition from normal to seizure states under external stimuli with particular emphasis on disinhibition and (ii) the initiation and propagation of seizures between multiple connected brain areas. A simulation scenario is shown to qualitatively resemble clinical EEG recordings of ECT. Fitting model param- eters is then performed using modern nonlinear state estimation approaches (cubature Kalman filters). Future work will integrate active models with passive volume conduction approaches to explore seizure induction and propagation.


  1. Arasaratnam, I. and Haykin, S. (2009). Cubature kalman filters. Automatic Control, IEEE Transactions on, 54(6):1254-1269.
  2. Avermann, M., Tomm, C., Mateo, C., Gerstner, W., and Peterson, C. (2012). Microcircuits of excitatory and inhibitory neurons in layer2/3 of mouse barrel cortex. Journal of Physiology, 107(11):175-191.
  3. Bai, S., Loo, C., Al Abed, A., and Dokos, S. (2012). A computational model of direct brain excitation induced by electroconvulsive therapy: comparison among three conventional electrode placements. Brain Stimulation, 5(3):408-421.
  4. Beierlein, M., Gibson, J. R., and Connors, B. W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of neurophysiology, 90(5):2987-3000.
  5. Cammarota, M., Losi, G., Chiavegato, A., Zonta, M., and Carmignoto, G. (2013). Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy.
  6. Cruishank, S., Ahmed, O., Stevens, T., Patrick, S., Gonzalez, A., Elmaleh, E., and Connors, B. (2012). Thalamic control of layer 1 circuits in prefrontal cortex.
  7. De Curtis, M. and Gnatkovsky, V. (2009). Reevaluating the mechanisms of focal ictogenesis: The role of lowvoltage fast activity. Epilepsia, 50(12):2514-2525.
  8. Demont-Guignard, S., Benquet, P., Gerber, U., Biraben, A., Martin, B., and Wendling, F. (2012). Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes. Annals of Neurology, 71:342-352.
  9. Deng, Z.-D., Lisanby, S. H., and Peterchev, A. V. (2011). Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study. Journal of neural engineering, 8(1):016007.
  10. Dugladze, T., Maziashvili, N., Börgers, C., Gurgenidze, S., Häussler, U., Winkelmann, A., Haas, C. A., Meier, J. C., Vida, I., Kopell, N. J., et al. (2013). Gabab autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice. Proceedings of the National Academy of Sciences, 110(37):15073-15078.
  11. Enev, M., McNally, K. A., Varghese, G., Zubal, I. G., Ostroff, R. B., and Blumenfeld, H. (2007). Imaging onset and propagation of ect-induced seizures. Epilepsia, 48(2):238-244.
  12. Havlicek, M., Friston, K. J., Jan, J., Brazdil, M., and Calhoun, V. D. (2011). Dynamic modeling of neuronal responses in fmri using cubature kalman filtering. Neuroimage, 56(4):2109-2128.
  13. Jansen, B. H. and Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological cybernetics, 73(4):357-366.
  14. Katzel, D., Zemelman, B., Buetfeing, C., Wolfel, M., and Miesenbock, G. (2011). The columnar and laminar organization of inhibitory connections to neocortical excitatory cells.
  15. Lee, W. H., Deng, Z.-D., Kim, T.-S., Laine, A. F., Lisanby, S. H., and Peterchev, A. V. (2012). Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: Influence of white matter anisotropic conductivity. Neuroimage, 59(3):2110-2123.
  16. Markram, H., Rodrequez, M., Wang, Y., Gupta, A., and Wu, C. (2004). Interneurons of the neocortical inhibitory system.
  17. Merkl, A., Heuser, I., and Bajbouj, M. (2009). Antidepressant electroconvulsive therapy: mechanism of action, recent advances and limitations. Experimental neurology, 219(1):20-26.
  18. Palmer, L., Murayama, M., and Larkum, M. (2012). Inhibitory regulation of dendritic activity in vivo. Frontiers in neural circuits, 6.
  19. Pfeffer, C. K., Xue, M., He, M., Huang, Z. J., and Scanziani, M. (2013). Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature neuroscience, 16(8):1068-1076.
  20. Sackeim, H. A., Prudic, J., Nobler, M. S., Fitzsimons, L., Lisanby, S. H., Payne, N., Berman, R. M., Brakemeier, E.-L., Perera, T., and Devanand, D. (2008). Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. Brain Stimulation, 1(2):71-83.
  21. Sanchez, R., Alcoverro, O., Pagerols, J., and Rojo, J. (2009). Electrophysiological mechanisms of action of electroconvulsive therapy. Actas Esp Psiquiatr, 37(6):343-351.
  22. Sedigh-Sarvestani, M., Schiff, S. J., and Gluckman, B. J. (2012). Reconstructing mammalian sleep dynamics with data assimilation. PLoS computational biology, 8(11):e1002788.
  23. Staiger, J. F., Freund, T. F., and Zilles, K. (1997). Interneurons immunoreactive for vasoactive intestinal polypeptide (vip) are extensively innervated by parvalbumin-containing boutons in rat primary somatosensory cortex. European Journal of Neuroscience, 9(11):2259-2268.
  24. Tamás, G., Szabadics, J., Lörincz, A., and Somogyi, P. (2004). Input and frequency-specific entrainment of postsynaptic firing by ipsps of perisomatic or dendritic origin. European Journal of Neuroscience, 20(10):2681-2690.
  25. Trevelyan, A. J. and Schevon, C. A. (2013). How inhibition influences seizure propagation. Neuropharmacology, 69:45-54.
  26. Ullah, G. and Schiff, S. J. (2010). Assimilating seizure dynamics. PLoS computational biology, 6(5):e1000776.
  27. Wendling, F., Bartolomei, F., Bellanger, J., and Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. European Journal of Neuroscience, 15(9):1499-1508.
  28. Wendling, F., Hernandez, A., Bellanger, J.-J., Chauvel, P., and Bartolomei, F. (2005). Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral eeg. Journal of Clinical Neurophysiology, 22(5):343-356.

Paper Citation

in Harvard Style

N. Karameh F., Awada M., Mourad F., Zahed K., Abou-Faycal I. and Nahas Z. (2014). Modeling of Neuronal Population Activation under Electroconvulsive Therapy . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 229-238. DOI: 10.5220/0004804002290238

in Bibtex Style

author={Fadi N. Karameh and Mohamad Awada and Firas Mourad and Karim Zahed and Ibrahim Abou-Faycal and Ziad Nahas},
title={Modeling of Neuronal Population Activation under Electroconvulsive Therapy},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},

in EndNote Style

JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Modeling of Neuronal Population Activation under Electroconvulsive Therapy
SN - 978-989-758-011-6
AU - N. Karameh F.
AU - Awada M.
AU - Mourad F.
AU - Zahed K.
AU - Abou-Faycal I.
AU - Nahas Z.
PY - 2014
SP - 229
EP - 238
DO - 10.5220/0004804002290238