Model-based Approach to Tissue Characterization using Optical Coherence Tomography

Cecília Lantos, Rafik Borji, Stéphane Douady, Karolos Grigoriadis, Kirill Larin, Matthew A. Franchek


Structural property of the tissue can be quantified by its optical scattering properties. Since a tumor is differentiated from healthy tissue based on morphological analysis, model-based approach to cancer diagnosis is developed. The scattering property is measured using Optical Coherence Tomography. The structural subsurface images from the measurements are described quantitatively. A parametric model is developed to classify tissue as healthy or cancerous. A statistical model-based imaging method is created to distinguish healthy vs. cancerous soft tissue using the example of human Normal Fat vs. Well-Differentiated- (WD-), and De-Differentiated Liposarcoma (DDLS).


  1. Bajraszewski, T., Wojtkowski, M., Szkulmowski, M., Anna Szkulmowska, Huber, R., Kowalczyk, A., 2008. Improved spectral optical coherence tomography using optical frequency comb, Optics Express, 16(6).
  2. Brezinski, M. E., 2006. Optical Coherence Tomography, Principles and Applications, Academic Press Elsevier Inc.
  3. Drexler, W. and Fujimoto, J. G., 2008. Optical Coherence Tomography: Technology and Applications, Springer, Berlin, New York.
  4. Carbajal, E. F., Baranov, S. A., Manne, V. G. R., Young, E. D., Lazar, A. J., Lev, D. C., Pollock, R. E., Larin, K.V., 2011. Revealing retroperitoneal liposarcoma morphology using optical coherence tomography, Journal of Biomedical Optics, 16(2).
  5. Fletcher, C. D. M., Rydholm, A., Singer, S., Sundaram, M., Coindre, J. M., 2006. Soft tissue tumours: Epidemiology, clinical features, histopathological typing and grading, WHO Classification of Soft Tissue Tumors.
  6. Goldberg, B. D., Iftimia, N. V., Bressner, J. E., Pitman, M. B., Halpern, E., Bouma, B. E., Tearney, G. J., 2008. Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance, Journal of Biomedical Optics, 13(1),
  7. Gossage, K. W., Tkaczyk, T. T., Rodriguez, J. J., Barton, J. K., 2003. Texture analysis of Optical Coherence Tomography images: feasibility for tissue classification, Journal of Biomedical Optics, 8(3).
  8. Gossage, K. W., Smith, C. M., Kanter, E. M., Hariri, L. P., Stone, A. L., Rodriguez, J. J., Williams, S. K., Barton, J. K., 2006. Texture analysis of speckle in Optical Coherence Tomography images of tissue phantoms, Physics in Medicine and Biology. 51.
  9. Lahat, G., Madewell, J.E., Anaya, D. A., Qiao, W., Tuvin, D., Benjamin, R. S., Lev, D. C., and Pollock, R. E., 2009. Computed Tomography Scan-Driven Selection of Treatment for Retroperitoneal Liposarcoma Histologic Subtypes, Cancer 115(5).
  10. Lev, D., Baranov, S. A., Carbajal, E. F. Young, E. D., Pollock, R. E., Larin, K. V., 2011. Differentiating retroperitoneal liposarcoma tumors with optical coherence tomography, Proceedings SPIE 7890, Advanced Biomedical and Clinical Diagnostic Systems IX, 78900U.
  11. McLaughlin, R. A., Scolaro, L., 2010. Parametric imaging of cancer with optical coherence tomography, Journal of Biomedical Optics, 15(4).
  12. Miettinen, M. M., 2003. Diagnostic Soft Tissue Pathology, Churchill Livingstone.
  13. Miettinen, M. M., 2010. Modern soft tissue pathology; tumors and non-neoplastic conditions, Cambridge University Press.
  14. Morris, P., Perkins, A., 2012. Diagnostic imaging, Physics and Medicine 2, Lancet, 379.
  15. Mujat, M., R., Ferguson, D., Hammer, D. X., Gittins, C., Iftimia, N., 2009. Automated algorithm for breast tissue differentiation in optical coherence tomography, Journal of Biomedical Optics, 14(3).
  16. Rembielak, A., Green, M., Saleem, A., 2011. Pat Price, Diagnostic and therapeutic imaging in oncology, Cancer Biology and Imaging, Medicine, 39(12).
  17. Sjöström, P. J., Frydel, Wahlberg, L. U., 1999. Artificial Neural Network-Aided Image Analysis System for Cell Counting, Cytometry, 36.
  18. Sullivan, A. C., Hunt, J. P., Oldenburg, A. L., 2011. Fractal analysis for classification of breast carcinoma in Optical Coherence Tomography, Journal of Biomedical Optics, 16(6).
  19. Yang, Y., Wang, T., Biswal, N.C., Wang, X., Sanders, M., Brewer, M., Zhu, Q., 2011. Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue, Journal of Biomedical Optics, 16(9).
  20. Zysk, A. M., Boppart, S. A., 2006. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images, Journal of Biomedical Optics, 11(5).

Paper Citation

in Harvard Style

Lantos C., Borji R., Douady S., Grigoriadis K., Larin K. and A. Franchek M. (2014). Model-based Approach to Tissue Characterization using Optical Coherence Tomography . In Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014) ISBN 978-989-758-014-7, pages 19-27. DOI: 10.5220/0004805500190027

in Bibtex Style

author={Cecília Lantos and Rafik Borji and Stéphane Douady and Karolos Grigoriadis and Kirill Larin and Matthew A. Franchek},
title={Model-based Approach to Tissue Characterization using Optical Coherence Tomography},
booktitle={Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014)},

in EndNote Style

JO - Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014)
TI - Model-based Approach to Tissue Characterization using Optical Coherence Tomography
SN - 978-989-758-014-7
AU - Lantos C.
AU - Borji R.
AU - Douady S.
AU - Grigoriadis K.
AU - Larin K.
AU - A. Franchek M.
PY - 2014
SP - 19
EP - 27
DO - 10.5220/0004805500190027