Convex Hull Area in Triaxial Mechanomyography during Functional Electrical Stimulation

Guilherme N. Nogueira-Neto, Eddy Krueger, Eduardo M. Scheeren, Vera L. S. N. Button, Percy Nohama


This study employed the convex hull in the analysis of triaxial mechanomyography (MMG) to determine hull area variations along prolonged muscle contractions elicited by functional electrical stimulation (FES). Closed-loop FES systems may need real-time adjustments in control parameters. Such systems may need to process small sample sets. The convex hull area can be applied to small sample sets and it does not suffer with non-stationarities. The MMG sensor used a triaxial accelerometer and the acquired samples were projected onto all planes. The hull determined the smallest convex polygon surrounding all points and its area was computed. Four spinal cord injured volunteers participated in the experiment. The quadriceps femoral muscle was stimulated in order to cause a full knee extension. FES parameters: 1 kHz pulse frequency and a 20 Hz burst frequency. Adjustments in the stimuli amplitude were controlled by a technician to sustain the extension. The results showed that the convex hull area decreased over time. Since the polygons are related to MMG amplitude, decreasing areas were related to muscle fatigue. The convex hull area can be a candidate to follow muscle fatigue during FES-elicited contractions and analysis of short length epochs.


  1. Akataki, K., Mita, K. & Itoh, Y. 1999. Relationship Between Mechanomyogram And Force During Voluntary Contractions Reinvestigated Using Spectral Decomposition. European Journal Of Applied Physiology, 80, 173-9.
  2. Bajd, T., Kralj, A., Sega, J., Turk, R., Benko, H. & Strojnik, P. 1981. Use Of A Two-Channel Functional Electrical Stimulator To Stand Paraplegic Patients. Physical Therapy, 61, 526-27.
  3. Beck, T. W., Housh, T. J., Johnson, G. O., Weir, J. P., Cramer, J. T., Coburn, J. W. & Malek, M. H. 2005. Comparison Of Fourier And Wavelet Transform Procedures For Examining The Mechanomyographic And Electromyographic Frequency Domain Responses During Fatiguing Isokinetic Muscle Actions Of The Biceps Brachii. Journal Of Electromyography And Kinesiology, 15, 190-9.
  4. Chapin, J., Moxon, K., Markowitz, R. & Nicolelis, M. 1999. Real-Time Control Of A Robot Arm Using Simultaneously Recorded Neurons In The Motor Cortex. Nature Neuroscience, 2, 664-70.
  5. Fong, S., Hang, Y., Mohammed, S. & Fiaidhi, J. 2011. Stream-Based Biomedical Classification Algorithms For Analyzing Biosignals. Journal Of Information Processing Systems, 7, 717-32.
  6. Gobbo, M., Cè, E., Diemont, B., Esposito, F. & Orizio, C. 2006. Torque And Surface Mechanomyogram Parallel Reduction During Fatiguing Stimulation In Human Muscles. European Journal Of Applied Physiology, 97, 9-15.
  7. Graham, R. L. 1972. An Efficient Algorithm For Determining The Convex Hull Of A Finite Planar Set. Information Processing Letters, 1, 132-3.
  8. Gregory, C. M. & Bickel, C. S. 2005. Recruitment Patterns In Human Skeletal Muscle During Electrical Stimulation. Physical Therapy, 85, 358-64.
  9. Hubert, M. & Rousseeuw, P. J. 2005. Robpca: A New Approach To Robust Principal Component Analysis. Technometrics, 47, 64-79.
  10. Jailani, R. & Tokhi, M. O. 2012. The Effect Of Functional Electrical Stimulation (Fes) On Paraplegic Muscle Fatigue. Ieee 8th International Colloquium On Signal Processing And Its Applications (Cspa). Shah Alam, Selangor, Malaysia: Ieee.
  11. Langlois, P. J., Demosthenous, A., Pachnis, I. & Donaldson, N. 2010. High-Power Integrated Stimulator Output Stages With Floating Discharge Over A Wide Voltage Range For Nerve Stimulation. Ieee Transactions On Biomedical Circuits And Systems, 4, 39-48.
  12. Nogueira-Neto, G. N., Krueger, E., Scheeren, E. M., Nohama, P. & Button, V. L. S. 2011. Estimulação Elétrica Funcional Aplicada Em Cadeia Aberta - Um Estudo De Caso Com Monitoração Mecanomiográfica. 5th Latin American Congress Of Biomedical Engineering. Havana: Ifmbe.
  13. Osborne, J. W. & Costello, A. B. 2004. Sample Size And Subject To Item Ratio In Principal Components Analysis. Practical Assessment, Research & Evaluation, 9, 8.
  14. Peng, C.-W., Chen, S.-C., Lai, C.-H., Chen, C.-J., Chen, C.-C., Mizrahi, J. & Handa, Y. 2011. Review: Clinical Benefits Of Functional Electrical Stimulation Cycling Exercise For Subjects With Central Neurological Impairments. Journal Of Medical And Biological Engineering, 31, 1-11.
  15. Petitjean, M., Maton, B. & Fourment, A. 1998. Summation Of Elementary Phonomyograms During Isometric Twitches In Humans. European Journal Of Applied Physiology, 77, 527-35.
  16. Petrofsky, J. S. 2004. Electrical Stimulation: Neurophysiological Basis And Application. Basic And Applied Myology, 14, 205-13.
  17. Qi, L., Wakeling, J. M., Green, A., Lambrecht, K. & Ferguson-Pell, M. 2011. Spectral Properties Of Electromyographic And Mechanomyographic Signals During Isometric Ramp And Step Contractions In Biceps Brachii. Journal Of Electromyography And Kinesiology, 21, 128-35.
  18. Rioul, O. & Vetterli, M. 1991. Wavelets And Signal Processing. Ieee Signal Processing Magazine, 8, 14-38.
  19. Schwartz, F. P., De Oliveira Nascimento, F. A., Bottaro, M. & Celes, R. S. 2012. Análise Da Estacionariedade Do Sinal De Eletromiografia De Superfície Nas Fases Do Exercício Isocinético De Extensão Do Joelho. Revista Brasileira De Engenharia Biomédica, 28, 44-52.
  20. Stokes, M. J. & Cooper, R. G. 1992. Muscle Sounds During Voluntary And Stimulated Contractions Of The Human Adductor Pollicis Muscle. Journal Of Applied Physiology, 72, 1908-13.
  21. Stokes, M. J. & Dalton, P. A. 1991. Acoustic Myography For Investigating Human Skeletal Muscle Fatigue. Journal Of Applied Physiology, 71, 1422-26.
  22. Tarata, M., Spaepen, A. & Puers, R. 2001. The Accelerometer Mmg Measurement Approach, In Monitoring The Muscular Fatigue. Measurement Science Review, 1, 47-50.
  23. Ward, A. R. & Robertson, V. J. 1998. Variation In Torque Production With Frequency Using Medium Frequency Alternating Current. Archives Of Physical Medicine And Rehabilitation, 79, 1399-1404.
  24. Xie, H.-B., Zheng, Y.-P. & Guo, J.-Y. 2009. Classification Of The Mechanomyogram Signal Using A Wavelet Packet Transform And Singular Value Decomposition For Multifunction Prosthesis Control. Physiological Measurement, 30, 441-57.
  25. Yoshitake, Y., Ue, H., Miyazaki, M. & Moritani, T. 2001. Assessment Of Lower-Back Muscle Fatigue Using Electromyography, Mechanomyography, And NearInfrared Spectroscopy. European Journal Of Applied Physiology, 84, 174-9.
  26. Yun-Hui, L. 1999. Qualitative Test And Force Optimization Of 3-D Frictional Form-Closure Grasps Using Linear Programming. Ieee Transactions On Robotics And Automation, 15, 163-73.

Paper Citation

in Harvard Style

N. Nogueira-Neto G., Krueger E., M. Scheeren E., L. S. N. Button V. and Nohama P. (2014). Convex Hull Area in Triaxial Mechanomyography during Functional Electrical Stimulation . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 251-256. DOI: 10.5220/0004806702510256

in Bibtex Style

author={Guilherme N. Nogueira-Neto and Eddy Krueger and Eduardo M. Scheeren and Vera L. S. N. Button and Percy Nohama},
title={Convex Hull Area in Triaxial Mechanomyography during Functional Electrical Stimulation},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},

in EndNote Style

JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Convex Hull Area in Triaxial Mechanomyography during Functional Electrical Stimulation
SN - 978-989-758-011-6
AU - N. Nogueira-Neto G.
AU - Krueger E.
AU - M. Scheeren E.
AU - L. S. N. Button V.
AU - Nohama P.
PY - 2014
SP - 251
EP - 256
DO - 10.5220/0004806702510256