Decentralized Computation of Pareto Optimal Pure Nash Equilibria of Boolean Games with Privacy Concerns

Sofie De Clercq, Kim Bauters, Steven Schockaert, Mihail Mihaylov, Martine De Cock, Ann Nowe

Abstract

In Boolean games, agents try to reach a goal formulated as a Boolean formula. These games are attractive because of their compact representations. However, few methods are available to compute the solutions and they are either limited or do not take privacy or communication concerns into account. In this paper we propose the use of an algorithm related to reinforcement learning to address this problem. Our method is decentralized in the sense that agents try to achieve their goals without knowledge of the other agents’ goals. We prove that this is a sound method to compute a Pareto optimal pure Nash equilibrium for an interesting class of Boolean games. Experimental results are used to investigate the performance of the algorithm.

References

  1. A°gotnes, T., Harrenstein, P., van der Hoek, W., and Wooldridge, M. (2013). Verifiable equilibria in Boolean games. In Proc. IJCAI 7813.
  2. Bonzon, E., Lagasquie-Schiex, M.-C., and Lang, J. (2007). Dependencies between players in Boolean games. In Proc. ECSQARU 7807, volume 4724 of LNCS, pages 743-754. Springer.
  3. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J., and Zanuttini, B. (2006). Boolean games revisited. In Proc. ECAI 7806, pages 265-269. ACM.
  4. Daskalakis, C., Goldberg, P., and Papadimitriou, C. (2006). The complexity of computing a Nash equilibrium. In Proc. STOC 7806, pages 71-78. ACM.
  5. Dunne, P., van der Hoek, W., Kraus, S., and Wooldridge, M. (2008). Cooperative Boolean games. In Proc. AAMAS 7808, volume 2, pages 1015-1022. IFAAMAS.
  6. Gottlob, G., Greco, G., and Scarcello, F. (2003). Pure Nash equilibria: hard and easy games. In Proc. TARK 7803, pages 215-230. ACM.
  7. Grinstead, C. and Snell, J. (1997). Introduction to Probability. American Mathematical Society.
  8. Harrenstein, P., van der Hoek, W., Meyer, J.-J., and Witteveen, C. (2001). Boolean games. In Proc. TARK 7801, pages 287-298. MKP Inc.
  9. Mihaylov, M. (2012). Decentralized Coordination in MultiAgent Systems. PhD thesis, Vrije Universiteit Brussel, Brussels.
  10. Mihaylov, M., Le Borgne, Y.-A., Tuyls, K., and Nowé, A. (2011). Distributed cooperation in wireless sensor networks. In Proc. AAMAS 7811.
  11. Shoham, Y. and Tennenholtz, M. (1993). Co-learning and the evolution of social activity. Technical report, Stanford University.
  12. Wooldridge, M., Endriss, U., Kraus, S., and Lang, J. (2013). Incentive engineering for Boolean games. Artificial Intelligence, 195:418-439.
Download


Paper Citation


in Harvard Style

De Clercq S., Bauters K., Schockaert S., Mihaylov M., De Cock M. and Nowe A. (2014). Decentralized Computation of Pareto Optimal Pure Nash Equilibria of Boolean Games with Privacy Concerns . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-016-1, pages 50-59. DOI: 10.5220/0004811700500059


in Bibtex Style

@conference{icaart14,
author={Sofie De Clercq and Kim Bauters and Steven Schockaert and Mihail Mihaylov and Martine De Cock and Ann Nowe},
title={Decentralized Computation of Pareto Optimal Pure Nash Equilibria of Boolean Games with Privacy Concerns },
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2014},
pages={50-59},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004811700500059},
isbn={978-989-758-016-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Decentralized Computation of Pareto Optimal Pure Nash Equilibria of Boolean Games with Privacy Concerns
SN - 978-989-758-016-1
AU - De Clercq S.
AU - Bauters K.
AU - Schockaert S.
AU - Mihaylov M.
AU - De Cock M.
AU - Nowe A.
PY - 2014
SP - 50
EP - 59
DO - 10.5220/0004811700500059