Towards Simulating Heterogeneous Drivers with Cognitive Agents

Arman Noroozian, Koen V. Hindriks, Catholijn M. Jonker

Abstract

Every driver behaves differently in traffic. However, when it comes to micro-simulation of drivers with a high level of detail no framework manages to model the complexities of various driving styles as well as scale up to larger simulations. We propose a framework of micro-simulation combined with cognitive agents to facilitate such simulation tasks. Our goal is to (i) model individual drivers, and (ii) use this framework for the purpose of simulating realistic highway traffic with heterogeneous driving styles. The challenge is therefore to create a framework that facilitates such complex modeling and supports large scale simulations. We evaluate the framework from two perspectives. First, the ability to represent, model and simulate dissimilar drivers in addition to study and compare emerging behavior. Second, the scalability of the framework. We report on our experiences with the framework, outline several challenges and identify future areas for development.

References

  1. Barceló, J., editor (2010). Fundamentals of Traffic Simulation, volume 145 of Operations Research & Management Science. Springer.
  2. Bartish, A. and Thevathayan, C. (2002). BDI agents for game development. In Proc. AAMAS 7802, part 2, page 668. ACM.
  3. Bazzan, A. L. C., Wahle, J., and Klügl, F. (1999). Agents in traffic modelling - from reactive to social behaviour. KI-99: Advances in Artificial Intelligence, pages 303- 306.
  4. Behrens, T. M., Hindriks, K. V., and Dix, J. (2010). Towards an environment interface standard for agent platforms. Annals of Mathematics and Artificial Intelligence, 61(4):261-295.
  5. Cheng, H. H. (2010). A Review of the Applications of Agent Technology in Traffic and Transportation Systems. IEEE Transactions on Intelligent Transportation Systems, 11(2):485-497.
  6. Dekker, M., Hameete, P., and Hegemans, M. (2012). HactarV2: an agent team strategy based on implicit coordination. Programming Multi-Agent Systems , LNCS, 7217:173-184.
  7. Ehlert, P. and Rothkrantz, L. (2001). Microscopic traffic simulation with reactive driving agents. In ITSC. 2001 IEEE Intelligent Transportation Systems., pages 860- 865. IEEE.
  8. Hidas, P. (2002). Modelling lane changing and merging in microscopic traffic simulation. Transportation Research Part C: Emerging Technologies, 10(5-6):351- 371.
  9. Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C. (2001). Agent programming with declarative goals. Intelligent Agents VII Agent Theories Architectures and Languages, LNCS, 1986:228- 243.
  10. Hindriks, K. V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N., Pasman, W., and de Rijk, L. (2011). Unreal goal bots. Agents for Games and Simulations II, LNCS, 6525:1-18.
  11. Hoogendoorn, R., Hoogendoorn, S. P., Brookhuis, K., and Daamen, W. (2010). Mental Workload, Longitudinal Driving Behavior, and Adequacy of Car-Following Models ... Transportation Research Record, 2188:64- 73.
  12. Kesting, A., Treiber, M., and Helbing, D. (2007). General Lane-Changing Model MOBIL for CarFollowing Models. Transportation Research Record, 1999(1):86-94.
  13. Krajzewicz, D. and Hertkorn, G. (2002). Sumo (simulation of urban mobility). Proc. of the 4th Middle East Symposium on Simulation and Modelling, pages 183-- 187.
  14. Langley, P., Laird, J. E., and Rogers, S. (2009). Cognitive architectures: Research issues and challenges. Cognitive Systems Research, 10(2):141-160.
  15. Lee, L., Nwana, H., Ndumu, D., and Wilde, P. D. (1998). The stability, scalability and performance of multiagent systems. BT Technology Journal, 16(3):94-103.
  16. Nagel, K. and Rickert, M. (2001). Parallel implementation of the TRANSIMS micro-simulation. Parallel Computing, 27(12):1611-1639.
  17. Navarro, L., Flacher, F., and Corruble, V. (2011). Dynamic level of detail for large scale agent-based urban simulations. Proc. AAMAS, 2:701-708.
  18. Ossen, S. and Hoogendoorn, S. P. (2011). Heterogeneity in car-following behavior: Theory and empirics. Transportation Research Part C: Emerging Technologies, 19(2):182-195.
  19. Pokahr, A., Braubach, L., and Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. Multi-Agent Programming, pages 149-174.
  20. Rindsfüser, G. (2005). Multi Agent System Simulation for the Generation of Individual Activity Programs. Applications of Agent Technology in Traffic and Transportation, pages 165-180.
  21. Rossetti, R. J., Bordini, R. H., Bazzan, A. L., Bampi, S., Liu, R., and Vliet, D. V. (2002). Using BDI agents to improve driver modelling in a commuter scenario. Transportation Research Part C: Emerging Technologies, 10(5-6):373-398.
  22. Salvucci, D. D. (2006). Modeling Driver Behavior in a Cognitive Architecture. Human Factors and Ergonomics Society, 48(2):362-380.
  23. Schakel, W. J., Knoop, V. L., and van Arem, B. (2012). Integrated Lane Change Model with Relaxation and Synchronization. Transportation Research Record, 2316:47-57.
  24. Smith, L., Beckman, R., and Baggerly, K. (1995). TRANSIMS: Transportation analysis and simulation system. Technical report, Los Alamos National Lab (United States).
  25. Sukthankar, R., Baluja, S., and Hancock, J. (1998). Multiple Adaptive Agents for Tactical Driving. Applied Intelligence, 9(1):7-23.
  26. Treiber, M., Hennecke, A., and Helbing, D. (2000). Congested Traffic States in Empirical Observations and Microscopic Simulations. Physical Review E, pages 1805-1824.
  27. Treiber, M. and Kesting, A. (2013). Traffic Flow Dynamics - Data, Models and Simulation. Springer.
  28. Turner, P. and Jennings, N. (2001). Improving the scalability of multi-agent systems. Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems, LNCS, 1887:246-262.
  29. Wolfe, S. R., Sierhuis, M., and Jarvis, P. A. (2008). To BDI, or not to BDI: design choices in an agent-based traffic flow management simulation. In Proc. SpringSim 7808, pages 63-70.
Download


Paper Citation


in Harvard Style

Noroozian A., V. Hindriks K. and M. Jonker C. (2014). Towards Simulating Heterogeneous Drivers with Cognitive Agents . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-016-1, pages 147-155. DOI: 10.5220/0004815601470155


in Bibtex Style

@conference{icaart14,
author={Arman Noroozian and Koen V. Hindriks and Catholijn M. Jonker},
title={Towards Simulating Heterogeneous Drivers with Cognitive Agents},
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2014},
pages={147-155},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004815601470155},
isbn={978-989-758-016-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Towards Simulating Heterogeneous Drivers with Cognitive Agents
SN - 978-989-758-016-1
AU - Noroozian A.
AU - V. Hindriks K.
AU - M. Jonker C.
PY - 2014
SP - 147
EP - 155
DO - 10.5220/0004815601470155