Robust Execution of Rover Plans via Action Modalities Reconfiguration

Enrico Scala, Roberto Micalizio, Pietro Torasso

Abstract

Robust execution of exploration mission plans has to deal with limited computational power on-board a planetary rover, and with limited rover’s autonomy. In most cases, these limitations practically prevent the rover to synthesize a new mission plan when some unexpected contingency arises. The paper shows that when such deviations refers to anomalies on the consumption of resources, robust execution can be achieved efficiently through an action reconfiguration approach instead of a replanning from scratch. Building up on an extended action model representation, the paper proposes an effective continual planner - ReCon - that, exploiting a general purpose CSP solver, is able to (i) detect violations of mission resource constraints, and (ii) find (if any) a new configuration of actions.

References

  1. Barták, R., Cˆ epek, O., and Hejna, M. (2008). Temporal reasoning in nested temporal networks with alternatives. In Fages, F., Rossi, F., and Soliman, S., editors, Recent Advances in Constraints, volume 5129 of Lecture Notes in Computer Science, pages 17-31. Springer Berlin Heidelberg.
  2. Calisi, D., Iocchi, L., Nardi, D., Scalzo, C., and Ziparo, V. A. (2008). Context-based design of robotic systems. Robotics and Autonomous Systems (RAS), 56(11):992-1003.
  3. Cesta, A. and Fratini, S. (2009). The timeline representation framework as a planning and scheduling software development environment. In Proc. of P&S Special Interest Group Workshop (PLANSIG-10).
  4. Chien, S., Johnston, M., Frank, J., Giuliano, M., Kavelaars, A., Lenzen, C., and Policella, N. (2012). A generalized timeline representation, services, and interface for automating space mission operations. Technical Report JPL TRS 1992+, Ames Research Center; Jet Propulsion Laboratory.
  5. Conrad, P. R. and Williams, B. C. (2011). Drake: An efficient executive for temporal plans with choice. Journal of Artificial Intelligence Research (JAIR), 42:607- 659.
  6. desJardins, M., Durfee, E. H., Jr., C. L. O., and Wolverton, M. (1999). A survey of research in distributed, continual planning. AI Magazine, 20(4):13-22.
  7. Fox, M., Gerevini, A., Long, D., and Serina, I. (2006). Plan stability: Replanning versus plan repair. In Proc. International Conference on Automated Planning and Scheduling (ICAPS-06), pages 212-221.
  8. Fox, M. and Long, D. (2003). Pddl2.1: An extension to pddl for expressing temporal planning domains. Journal of Artificial Intelligence Research (JAIR), 20:61-124.
  9. Fratini, S., Pecora, F., and Cesta, A. (2008). Unifying Planning and Scheduling as Timelines in a ComponentBased Perspective. Archives of Control Sciences, 18(2):231-271.
  10. Garrido, A., C., G., and Onaindia, E. (2010). Anytime planadaptation for continuous planning. In Proc. of P&S Special Interest Group Workshop (PLANSIG-10).
  11. Gerevini, A., Saetti, A., and Serina, I. (2012). Case-based planning for problems with real-valued fluents: Kernel functions for effective plan retrieval. In Proc. of European Conference on AI (ECAI-12), pages 348- 353.
  12. Gerevini, A., Saetti, I., and Serina, A. (2008). An approach to efficient planning with numerical fluents and multicriteria plan quality. Artificial Intelligence, 172(8- 9):899-944.
  13. Gerevini, A. and Serina, I. (2010). Efficient plan adaptation through replanning windows and heuristic goals. Fundamenta Informaticae, 102(3-4):287-323.
  14. Hoffmann, J. (2003). The metric-ff planning system: Translating ”ignoring delete lists” to numeric state variables. Journal of Artificial Intelligence Research (JAIR), 20:291-341.
  15. Lopez, A. and Bacchus, F. (2003). Generalizing graphplan by formulating planning as a csp. In Proc. of International Conference on Artificial Intelligence (IJCAI03), pages 954-960.
  16. Micalizio, R. (2013). Action failure recovery via modelbased diagnosis and conformant planning. Computational Intelligence, 29(2):233-280.
  17. Micalizio, R., Scala, E., and Torasso, P. (2011). Intelligent supervision for robust plan execution. In LNCS 6954 of Associazione Italiana per Intelligenza Artificiale (AIxIA-11), pages 151-163.
  18. Muscettola, N. (1993). Hsts: Integrating planning and scheduling. Technical Report CMU-RI-TR-93-05, Robotics Institute, Pittsburgh, PA.
  19. Narendra, J., Rochart, G., and Lorca, X. (2008). Choco: an open source java constraint programming library. In CPAIOR'08 Workshop on Open-Source Software for Integer and Contraint Programming (OSSICP'08), pages 1-10.
  20. Policella, N., Cesta, A., Oddi, A., and Smith, S. (2009). Solve-and-robustify. Journal of Scheduling, 12:299- 314. 10.1007/s10951-008-0091-7.
  21. Scala, E. (2013a). Numeric kernel for reasoning about plans involving numeric fluents. In Baldoni, M., Baroglio, C., Boella, G., and Micalizio, R., editors, AI*IA 2013: Advances in Artificial Intelligence, volume 8249 of Lecture Notes in Computer Science, pages 263-275.
  22. Scala, E. (2013b). Numerical kernels for monitoring and repairing plans involving continuous and consumable resources. In Proc. of International Conference on Agents and Artificial Intelligence (ICAART-13), pages 531-534.
  23. Scala, E. (2013c). Reconfiguration and Replanning for robust Execution of Plans Involving Continous and Consumable Resources. PhD thesis, Department of Computer Science - Turin.
  24. van der Krogt, R. and de Weerdt, M. (2005). Plan repair as an extension of planning. In Proc. International Conference on Automated Planning and Scheduling (ICAPS-05), pages 161-170.
Download


Paper Citation


in Harvard Style

Scala E., Micalizio R. and Torasso P. (2014). Robust Execution of Rover Plans via Action Modalities Reconfiguration . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-015-4, pages 142-152. DOI: 10.5220/0004819501420152


in Bibtex Style

@conference{icaart14,
author={Enrico Scala and Roberto Micalizio and Pietro Torasso},
title={Robust Execution of Rover Plans via Action Modalities Reconfiguration},
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2014},
pages={142-152},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004819501420152},
isbn={978-989-758-015-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Robust Execution of Rover Plans via Action Modalities Reconfiguration
SN - 978-989-758-015-4
AU - Scala E.
AU - Micalizio R.
AU - Torasso P.
PY - 2014
SP - 142
EP - 152
DO - 10.5220/0004819501420152