Contour-Net - A Model for Tactile Contour-tracing and Shape-recognition

André Frank Krause, Thierry Hoinville, Nalin Harischandra, Volker Dürr

Abstract

We propose Contour-Net as a bio-inspired model for rhythmic movement control of a pair of insectoid feelers, able to successively sample the contour of arbitrarily shaped objects. Initial object contact initiates a smooth transition from a large-amplitude, low-frequency searching behaviour to a local, small-amplitude and high frequency sampling behaviour. Both behavioural states are defined by the parameters of a Hopf Oscillator. Subsequent contact signals trigger a 180º phase-forwarding of the oscillator, resulting in repeated sampling of the object. The local sampling behaviour effectively serves as a contour-tracing method with high robustness, even for complicated shapes. Collected contour data points can be directly fed into an artificial neural network to classify the shape of an object. Given a sufficiently large training dataset, tactile shape recognition can be achieved in a position-, orientation- and size-invariant manner. Only minimal pre-processing (normalisation) of contour data points is required.

References

  1. Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is "nearest neighbor" meaningful? In Beeri, C. and Buneman, P., editors, Database Theory - ICDT 99, volume 1540 of Lecture Notes in Computer Science, pages 217-235. Springer Berlin Heidelberg.
  2. Buchli, J., Righetti, L., and Ijspeert, A. J. (2005). A dynamical systems approach to learning: a frequencyadaptive hopper robot. In Proceedings of the VIIIth European Conference on Artificial Life (ECAL 2005), Lecture Notes in Artificial Intelligence, pages 210- 212.
  3. Dürr, V., König, Y., and Kittmann, R. (2001). The antennal motor system of the stick insect Carausius morosus: Anatomy and antennal movement pattern during walking. Journal of Comparative Physiology A, 187(2):131-144.
  4. Erber, J., Kierzek, S., Sander, E., and Grandy, K. (1998). Tactile learning in the honeybee. Journal of Comparative Physiology A, 183:737-744.
  5. Esslen, J. and Kaissling, K.-E. (1976). Zahl und verteilung antennaler sensillen bei der honigbiene (Apis mellifera l.). Zoomorphology, 83:227-251. 10.1007/BF00993511.
  6. Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In S. C. Kremer, J. F. K., editor, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press.
  7. Hoinville, T., Wehner, R., and Cruse, H. (2012). Learning and retrieval of memory elements in a navigation task. In Prescott, T., Lepora, N., Mura, A., and Verschure, P., editors, Biomimetic and Biohybrid Systems, volume 7375 of Lecture Notes in Computer Science, pages 120-131. Springer Berlin Heidelberg.
  8. Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3):489 - 501.
  9. Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4):642 - 653.
  10. Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.- M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315(5817):1416-1420.
  11. Kaneko, M., Kanayama, N., and Tsuji, T. (1995). 3-d active antenna for contact sensing. In IEEE International Conference on Robotics and Automation, volume 1, pages 1113-1119. IEEE.
  12. Kaneko, M., Kanayma, N., and Tsuji, T. (1998). Active antenna for contact sensing. IEEE Transactions on Robotics and Automation, 14(2):278-291.
  13. Kevan, P. G. and Lane, M. A. (1985). Flower petal microtexture is a tactile cue for bees. Proceedings of the National Academy of Sciences, 82(14):4750-4752.
  14. Kim, D. and Möller, R. (2007). Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems, 55(3):229-243.
  15. Krause, A. F. and Dürr, V. (2004). Tactile efficiency of insect antennae with two hinge joints. Biological Cybernetics, 91(3):168-181.
  16. Krause, A. F. and Dürr, V. (2012). Active tactile sampling by an insect in a step-climbing paradigm. Frontiers in Behavioural Neuroscience, 6(30):1-17.
  17. Krause, A. F., Essig, K., Piefke, M., and Schack, T. (2013a). No-prop-fast - a high-speed multilayer neural network learning algorithm: Mnist benchmark and eyetracking data classification. In Engineering Applications of Neural Networks (EANN 2013), pages 446- 455. Springer.
  18. Krause, A. F., Winkler, A., and Dürr, V. (2013b). Central drive and proprioceptive control of antennal movements in the walking stick insect. Journal of Physiology-Paris, 107(1-2):116 - 129.
  19. LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998). Efficient backprop. In Orr, G. B. and Müller, K.-R., editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science, pages 9- 50. Springer Berlin Heidelberg.
  20. Lederman, S. and Klatzky, R. (2009). Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71(7):1439-1459. 10.3758/APP.71.7.1439.
  21. Lee, M. and Nicholls, H. (1999). Review article tactile sensing for mechatronics - a state of the art survey. Mechatronics, 9(1):1 - 31.
  22. Patanè, L., Hellbach, S., Krause, A. F., Arena, P., and Dürr, V. (2012). An insect-inspired bionic sensor for tactile localization and material classification with statedependent modulation. Frontiers in Neurorobotics, 6(8):1-18.
  23. Righetti, L. and Ijspeert, A. J. (2006). Programmable central pattern generators: an application to biped locomotion control. In IEEE International Conference on Robotics and Automation (ICRA), pages 1585-1590. IEEE.
  24. Russell, R. A. and Wijaya, J. A. (2003). Object location and recognition using whisker sensors. In Australasian Conference on Robotics and Automation, pages 761- 768.
  25. Schilling, M., Hoinville, T., Schmitz, J., and Cruse, H. (2013). Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics, 107(4):397-419.
  26. Schütz, C. and Dürr, V. (2011). Active tactile exploration for adaptive locomotion in the stick insect. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1581):2996-3005.
  27. Solomon, J. H. and Hartmann, M. J. (2006). Biomechanics: Robotic whiskers used to sense features. Nature, 443(7111):525.
  28. Staudacher, E., Gebhardt, M. J., and Dürr, V. (2005). Antennal movements and mechanoreception: neurobiology of active tactile sensors. Advances in Insect Physiology, 32:49 - 205.
  29. Widrow, B., Greenblatt, A., Kim, Y., and Park, D. (2013). The No-Prop algorithm: A new learning algorithm for multilayer neural networks. Neural Networks, 37:182-188.
Download


Paper Citation


in Harvard Style

Frank Krause A., Hoinville T., Harischandra N. and Dürr V. (2014). Contour-Net - A Model for Tactile Contour-tracing and Shape-recognition . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-016-1, pages 92-101. DOI: 10.5220/0004821700920101


in Bibtex Style

@conference{icaart14,
author={André Frank Krause and Thierry Hoinville and Nalin Harischandra and Volker Dürr},
title={Contour-Net - A Model for Tactile Contour-tracing and Shape-recognition},
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2014},
pages={92-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004821700920101},
isbn={978-989-758-016-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Contour-Net - A Model for Tactile Contour-tracing and Shape-recognition
SN - 978-989-758-016-1
AU - Frank Krause A.
AU - Hoinville T.
AU - Harischandra N.
AU - Dürr V.
PY - 2014
SP - 92
EP - 101
DO - 10.5220/0004821700920101