Semi-Markov Modeling-Clustering of Human Sleep with Efficient Initialization and Stopping

Chiying Wang, Sergio A. Alvarez, Carolina Ruiz, Majaz Moonis

Abstract

Collective Dynamical Modeling-Clustering (CDMC) is an algorithmic framework for time series dynamical modeling and clustering using probabilistic state-transition models. In this paper, an efficient initialization technique based on Itakura slope-constrained Dynamic Time Warping is applied to CDMC. Semi-Markov chains are used as the dynamical models. Experimental evaluation demonstrates the effectiveness of the proposed approach in providing more realistic dynamical modeling of sleep stage dynamics than Markov models, with improved clustering quality and convergence speed as compared with pseudorandom initialization.

References

  1. Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find patterns in time series. In KDD Workshop, volume 10 (16), pages 359-370. Seattle, WA.
  2. Bianchi, M. T., Cash, S. S., Mietus, J., Peng, C.-K., and Thomas, R. (2010). Obstructive sleep apnea alters sleep stage transition dynamics. PLoS ONE, 5(6):e11356.
  3. Chervin, R. D., Fetterolf, J. L., Ruzicka, D. L., Thelen, B. J., and Burns, J. W. (2009). Sleep stage dynamics differ between children with and without obstructive sleep apnea. Sleep, 32(10):13251332.
  4. Chu-Shore, J., Westover, M. B., and Bianchi, M. T. (2010). Power law versus exponential state transition dynamics: application to sleep-wake architecture. PloS one, 5(12):e14204.
  5. Hernandez, T. L., Ballard, R. D., Weil, K. M., Shepard, T. Y., Scherzinger, A. L., Stamm, E. R., Sharp, T. A., and Eckel, R. H. (2009). Effects of maintained weight loss on sleep dynamics and neck morphology in severely obese adults. Obesity, 17(1):84-91.
  6. Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2:193-218. 10.1007/BF01908075.
  7. Iber, C., Ancoli-Israel, S., Chesson, A., and Quan, S. (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Westchester: American Academy of Sleep Medicine.
  8. Itakura (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1):52- 72.
  9. Kim, J., Lee, J. S., Robinson, P., and Jeong, D. U. (2009). Markov analysis of sleep dynamics. Physical Review Letters, 102(17):178104.
  10. Kishi, A., Struzik, Z. R., Natelson, B. H., Togo, F., and Yamamoto, Y. (2008). Dynamics of sleep stage transitions in healthy humans and patients with chronic fatigue syndrome. American Journal of PhysiologyRegulatory, Integrative and Comparative Physiology, 294(6):R1980-R1987.
  11. Oates, T., Firoiu, L., and Cohen, P. R. (1999). Clustering time series with hidden Markov models and dynamic time warping. In Proceedings of the IJCAI-99 Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, pages 17-21.
  12. Phillips, A. J., Robinson, P. A., Kedziora, D. J., and Abeysuriya, R. G. (2010). Mammalian sleep dynamics: how diverse features arise from a common physiological framework. PLOS Computational Biology, 6(6).
  13. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846-850.
  14. Rechtschaffen, A. and Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. US Department of Health, Education, and Welfare Public Health Service - NIH/NIND.
  15. Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43-49.
  16. Salvador, S. and Chan, P. (2007). Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis, 11(5):561-580.
  17. Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. The Journal of Machine Learning Research, 9999:2837-2854.
  18. Wang, C., Alvarez, S. A., Ruiz, C., and Moonis, M. (2013). Computational modeling of sleep stage dynamics using Weibull semi-Markov chains. In Proc. Sixth International Conference on Health Informatics (HEALTHINF 2013), pages 122-130, Barcelona, Spain. SciTePress.
  19. Yu, S.-Z. (2010). Hidden semi-Markov models. Artificial Intelligence, 174(2):215 - 243. Special Review Issue.
  20. Zung, W. W., Naylor, T. H., Gianturco, D. T., and Wilson, W. P. (1965). Computer simulation of sleep EEG patterns with a Markov chain model. Recent advances in biological psychiatry, 8:335-355.
Download


Paper Citation


in Harvard Style

Wang C., A. Alvarez S., Ruiz C. and Moonis M. (2014). Semi-Markov Modeling-Clustering of Human Sleep with Efficient Initialization and Stopping . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 61-68. DOI: 10.5220/0004824900610068


in Bibtex Style

@conference{biosignals14,
author={Chiying Wang and Sergio A. Alvarez and Carolina Ruiz and Majaz Moonis},
title={Semi-Markov Modeling-Clustering of Human Sleep with Efficient Initialization and Stopping},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},
year={2014},
pages={61-68},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004824900610068},
isbn={978-989-758-011-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Semi-Markov Modeling-Clustering of Human Sleep with Efficient Initialization and Stopping
SN - 978-989-758-011-6
AU - Wang C.
AU - A. Alvarez S.
AU - Ruiz C.
AU - Moonis M.
PY - 2014
SP - 61
EP - 68
DO - 10.5220/0004824900610068