Region Segregation by Linking Keypoints Tuned to Colour

M. Farrajota, J. M. F. Rodrigues, J. M. H. du Buf

Abstract

Coloured regions can be segregated from each other by using colour-opponent mechanisms, colour contrast, saturation and luminance. Here we address segmentation by using end-stopped cells tuned to colour instead of to colour contrast. Colour information is coded in separate channels. By using multi-scale cortical endstopped cells tuned to colour, keypoint information in all channels is coded and mapped by multi-scale peaks. Unsupervised segmentation is achieved by analysing the branches of these peaks, which yields the best-fitting image regions.

References

  1. Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):679-698.
  2. Derrington, A. M., Parker, A., Barraclough, N. E., Easton, A., Goodson, G. R., Parker, K. S., Tinsley, C. J., and Webb, B. S. (2002). The uses of colour vision: behavioural and physiological distinctiveness of colour stimuli. Phil. Trans. R. Soc. Lond. B, 357:975-985.
  3. Farrajota, M., Rodrigues, J., and du Buf, J. (2011). Optical flow by multi-scale annotated keypoints: A biological approach. Proc. Int. Conf. on Bio-inspired Systems and Signal Processing (BIOSIGNALS 2011), Rome, Italy, 26-29 January, pages 307-315.
  4. Gegenfurtner, K. R. (2003). Cortical mechanisms of colour vision. Nature Rev. Neurosci, 4:563-572.
  5. Goddard, E., Mannion, D. J., McDonald, J. S., Solomon, S. G., and Clifford, C. W. G. (2011). Color responsiveness argues against a dorsal component of human v4. Journal of Vision, 11(4).
  6. Grill-Spector, K. and Malach, R. (2004). The human visual cortex. Annu. Rev. Neurosci., 27:649-677.
  7. Grossberg, S., Mingolla, E., and Ross, W. D. (1997). Visual brain and visual perception: How does the cortex do perceptual grouping? Trends in neurosciences, 20(3):106-111.
  8. Hansen, T. and Gegenfurtner, K. R. (2006). Higher level chromatic mechanisms for image segmentation. Journal of Vision, 6(3).
  9. Hubel, D. (1995). Eye, brain and vision. Scientific American Library.
  10. Jacobs, G. H. (2009). Evolution of colour vision in mammals. Phil. Trans. R. Soc. B, 364:2957-2967.
  11. Li, Z. et al. (2000). Pre-attentive segmentation in the primary visual cortex. Spatial Vision, 13(1):25-50.
  12. Lucchese, L. and Mitra, S. (2001). Color image segmentation: A state-of-the-art survey. Image Processing, Vision, and Pattern Recognition, Proc. of the Indian National Science Academy, 67(2):207-221.
  13. Mushrif, M. M. and Ray, A. K. (2008). Color image segmentation: Rough-set theoretic approach. Pattern Recognition Letters, 29(4):483-493.
  14. Pal, N. R. and Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9):1277- 1294.
  15. Robol, V., Casco, C., and Dakin, S. C. (2012)). The role of crowding in contextual influences on contour integration. Journal of Vision, 12(7):1-18.
  16. Rodrigues, J. and du Buf, J. (2006). Multi-scale keypoints in V1 and beyond: object segregation, scale selection, saliency maps and face detection. BioSystems, 2:75- 90.
  17. Roe, A. W., Chelazzi, L., Connor, C. E., Conway, B. R., Fujita, I., Gallant, J. L., Lu, H., and Vanduffel, W. (2012). Toward a unified theory of visual area v4. Neuron, 74(1):12 - 29.
  18. Shapley, R. and Hawken, M. (2011). Color in the cortex: single- and double-opponent cells. Vision Research, 51:701-717.
  19. Sminchisescu, C., Bo, L., Ionescu, C., and Kanaujia, A. (2011). Feature-based pose estimation. In Visual Analysis of Humans, pages 225-251. Springer.
  20. Vantaram, S. R. and Saber, E. (2012). Unsupervised video segmentation by dynamic volume growing and multivariate volume merging using color-texture-gradient features. In Image Processing (ICIP), 19th IEEE International Conference on, pages 305-308. IEEE.
  21. Young, R. A., Lesperance, R. M., and Meyer, W. W. (2001). The gaussian derivative model for spatial-temporal vision: I. cortical model. Spatial Vision, 14(3-4):261- 319.
  22. Zeki, S. (1998). review: Parallel processing, asynchronous perception, and a distributed system of consciousness in vision. The Neuroscientist, 4(5):365-372.
  23. Zeki, S., Watson, J., Lueck, C., Friston, K. J., Kennard, C., and Frackowiak, R. (1991). A direct demonstration of functional specialization in human visual cortex. The Journal of neuroscience, 11(3):641-649.
Download


Paper Citation


in Harvard Style

Farrajota M., M. F. Rodrigues J. and M. H. du Buf J. (2014). Region Segregation by Linking Keypoints Tuned to Colour . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 247-254. DOI: 10.5220/0004827002470254


in Bibtex Style

@conference{icpram14,
author={M. Farrajota and J. M. F. Rodrigues and J. M. H. du Buf},
title={Region Segregation by Linking Keypoints Tuned to Colour},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={247-254},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004827002470254},
isbn={978-989-758-018-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Region Segregation by Linking Keypoints Tuned to Colour
SN - 978-989-758-018-5
AU - Farrajota M.
AU - M. F. Rodrigues J.
AU - M. H. du Buf J.
PY - 2014
SP - 247
EP - 254
DO - 10.5220/0004827002470254