Statistical Methodology for Approximating G/G/1 Queues by the Strong Stability Technique

Aicha Bareche, Djamil Aïssani

Abstract

We consider a statistical methodology for the study of the strong stability of the M/G/1 queueing system after disrupting the arrival flow. More precisely, we use nonparametric density estimation with boundary correction techniques and the statistical Student test to approximate the G/G/1 system by the M/G/1 one, when the general arrivals law G in the G/G/1 system is unknown. By elaborating an appropriate algorithm, we effectuate simulation studies to provide the proximity error between the corresponding arrival distributions of the quoted systems, the approximation error on their stationary distributions and confidence intervals for the difference between their corresponding characteristics.

References

  1. Aïssani, D. and Kartashov, N. (1983). Ergodicity and stability of Markov chains with respect to operator topology in the space of transition kernels. Compte Rendu Academy of Sciences U.S.S.R, ser., A 11:3-5.
  2. Aïssani, D. and Kartashov, N. (1984). Strong stability of the imbedded Markov chain in an M=G=1 system. Theory of Probability and Mathematical Statistics, American Mathematical Society, 29:1-5.
  3. Banks, J., Carson, J., and Nelson, B. (1996). Discrete-Event System Simulation. Prentice Hall, New Jersey.
  4. Bareche, A. and Aïssani, D. (2008). Kernel density in the study of the strong stability of the M=M=1 queueing system. Operations Research Letters, 36 (5):535-538.
  5. Bareche, A. and Aïssani, D. (2011). Statistical techniques for a numerical evaluation of the proximity of G=G=1 and G=M=1 queueing systems. Computers and Mathematics with Applications, 61 (5):1296-1304.
  6. Bareche, A. and Aïssani, D. (2013). Combinaison des méthodes de stabilité forte et d'estimation non paramétrique pour l'approximation de la file d'attente G=G=1. Journal européen des systèmes automatisés, 47 (1-2-3):155-164.
  7. Benaouicha, M. and Aïssani, D. (2005). Strong stability in a G=M=1 queueing system. Theor. Probability and Math. Statist., 71:25-36.
  8. Berdjoudj, L. and Aïssani, D. (2003). Strong stability in retrial queues. Theor. Probab. Math. Stat., 68:11-17.
  9. Berdjoudj, L., Benaouicha, M., and Aïssani, D. (2012). Measure of performances of the strong stability method. Mathematical and Computer Modelling, 56:241-246.
  10. Borovkov, A. (1984). Asymptotic Methods in Queueing Theory. Wiley, New York.
  11. Bouallouche, L. and Aïssani, D. Performance Analysis Approximation in a Queueing System of Type M=G=1.
  12. Bouallouche, L. and Aïssani, D. (2006). Measurement and Performance of the Strong Stability Method. Theory of Probability and Mathematical Statistics, American Mathematical Society, 72:1-9.
  13. Bouezmarni, T. and Scaillet, O. (2005). Consistency of Asymmetric Kernel Density Estimators and Smoothed Histograms with Application to Income Data. Econometric Theory, 21:390-412.
  14. Chen, S. X. (2000). Probability Density Function Estimation Using Gamma Kernels. Ann. Inst. Statis. Math., 52:471-480.
  15. Heidergott, B. and Hordijk, A. (2003). Taylor expansions for stationary markov chains. Adv. Appl. Probab., 35:1046-1070.
  16. Heidergott, B., Hordijk, A., and Uitert, M. V. (2007). Series expansions for finite-state markov chains. Adv. Appl. Probab., 21:381-400.
  17. Jones, M. C., Marron, J. S., and Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. J.A.S.A., 91:401-407.
  18. Kartashov, N. V. (1996). Strong Stable Markov Chains. TbiMC Scientific Publishers, VSPV, Utrecht.
  19. Kleinrock, L. (1975). Queueing Systems, vol. 1. John Wiley and Sons.
  20. Parzen, E. (1962). On estimation of a probability density function and mode. Ann. Math. Stat., 33:1065-1076.
  21. Rachev, S. (1989). The problem of stability in queueing theory. Queueing Systems, 4:287318.
  22. Rosenblatt, M. (1956). Remarks on some non-parametric estimates of a density function. Ann. Math. Statist., 27:832-837.
  23. Schuster, E. F. (1985). Incorporating support constraints into nonparametric estimation of densities. Commun. Statist. Theory Meth., 14:1123-1136.
  24. Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman and Hall, London.
  25. Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models (English translation). In: Daley, D.J. (Ed.), Wiley, New York.
Download


Paper Citation


in Harvard Style

Bareche A. and Aïssani D. (2014). Statistical Methodology for Approximating G/G/1 Queues by the Strong Stability Technique . In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-017-8, pages 241-248. DOI: 10.5220/0004834002410248


in Bibtex Style

@conference{icores14,
author={Aicha Bareche and Djamil Aïssani},
title={Statistical Methodology for Approximating G/G/1 Queues by the Strong Stability Technique},
booktitle={Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2014},
pages={241-248},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004834002410248},
isbn={978-989-758-017-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Statistical Methodology for Approximating G/G/1 Queues by the Strong Stability Technique
SN - 978-989-758-017-8
AU - Bareche A.
AU - Aïssani D.
PY - 2014
SP - 241
EP - 248
DO - 10.5220/0004834002410248