Expression, Pose, and Illumination Invariant Face Recognition using Lower Order Pseudo Zernike Moments

Madeena Sultana, Marina Gavrilova, Svetlana Yanushkevich

Abstract

Face recognition is an extremely challenging task with the presence of expression, orientation, and lightning variation. This paper presents a novel expression and pose invariant feature descriptor by combining Daubechies discrete wavelets transform and lower order pseudo Zernike moments. A novel normalization method is also proposed to obtain illumination invariance. The proposed method can recognize face images regardless of facial orientation, expression, and illumination variation using small number of features. An extensive experimental investigation is conducted using a large variation of facial orientation, expression, and illumination to evaluate the performance of the proposed method. Experimental results confirm that the proposed approach obtains high recognition accuracy and computational efficiency under different pose, expression, and illumination conditions.

References

  1. AT&T Lab. Cambridge; www.cl.cam.ac.uk/research/dtg/ attarchive/facedatabase.html, Accessed on 8 Oct., 2013.
  2. Bairagi, B. K., Chatterjee, A., Das, S. C., Tudu, B., 2012. Expressions invariant face recognition using SURF and Gabor features, 3rd Int. Conf. on Emerging Applications of Information Tech. (EAIT), 170-173.
  3. Behbahani, E. F., Bastani, A., 2011. Human face recognition by pseudo Zernike moment and probabilistic neural network, Int. J. of Engineering Science and Tech., 3(7), 5466-5469.
  4. Cover, T., Hart, P., 1967. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory, 13(1), 21-27.
  5. Demirel, H., Anbarjafari, G., 2008. High performance pose invariant face recognition, VISAPP, 282-285.
  6. Farokhi, S., Shamsuddin, S. M., Flusser, J., Sheikh, U. U., Khansari, M., Jafari-Khouzani, K., 2013. Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis. Journal of Electronic Imaging, 22(1), 013030-013030.
  7. Foon, N. H., Pang, Y. H., Jin, A. T. B., Ling, D. N. C., 2004. An efficient method for human face recognition using wavelet transform and Zernike moments, Int. Conf. on Computer Graphics, Imaging and Visualization (CGIV), 65-69.
  8. Gamma correction; http://software.intel.com/sites/ products/documentation/hpc/ipp/ippi/ippi_ch6/ch6_ga mma_correction.html# ch6_gamma_correction, Accessed on 8 Oct., 2013.
  9. Haddadnia, J., Ahmadi, M., Faez, K., 2003. An efficient feature extraction method with pseudo-Zernike moment in RBF neural network-based human face recognition system, EURASIP journal on applied signal processing, 890-901.
  10. Herman, J., Rani, S., Devaraj, D., 2009. Face recognition using generalized pseudo Zernike moment, Annual IEEE India Conference, 1-4.
  11. Martinez, A.M., Kak, A.C., 2001. PCA versus LDA, IEEE TPAMI, 23(2), 228-233.
  12. Nabatchian, A., Abdel-Raheem, E., Ahmadi, M., 2008. Human face recognition using different moment invariants: A comparative study, Congress on Image and Signal Processing CISP'08, 3, 661-666.
  13. Pang, Y. H., Teoh, A. B., Ngo, D. C., 2006. A discriminant pseudo Zernike moments in face recognition, J. of Research and Practice in Information Technology, 38(2), 197.
  14. Paris, S., Kornprobst, P., Tumblin, J., Durand, F., 2007. A gentle introduction to bilateral filtering and its applications, ACM SIGGRAPH 2007 courses, 1.
  15. Sultana, M., Gavrilova, M., 2013. A Content Based Feature Combination Method for Face Recognition, CORES, 197-206.
  16. Sheffield database; http://www.sheffield.ac.uk/eee/ research/iel/research/face, Accessed on 8 Oct., 2013.
  17. Shen, J., Strang, G., 1998. Asymptotics of daubechies filters, scaling functions, and wavelets, Applied and Computational Harmonic Analysis, 5(3), 312-331.
  18. Tan, X., Triggs, B., 2007. Preprocessing and feature sets for robust face recognition, CVPR, 7, 1-8.
  19. Teh, C. H., Chin, R. T., 1988. On image analysis by the methods of moments, IEEE TPAMI, 10(4), 496-513.
  20. Wang, B., Li, W., Yang, W., Liao, Q., 2011. Illumination normalization based on Weber's law with application to face recognition. Signal Proc. Lett., 18(8), 462-465.
  21. Wang, H., Ye, M., Yang, S., 2013. Shadow compensation and illumination normalization of face image, Machine Vision and Applications, 1-11.
  22. Yale database; http://cvc.yale.edu/projects/yalefaces/ yalefaces.html, Accessed on 8 Oct., 2013.
Download


Paper Citation


in Harvard Style

Sultana M., Gavrilova M. and Yanushkevich S. (2014). Expression, Pose, and Illumination Invariant Face Recognition using Lower Order Pseudo Zernike Moments . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 216-221. DOI: 10.5220/0004842602160221


in Bibtex Style

@conference{visapp14,
author={Madeena Sultana and Marina Gavrilova and Svetlana Yanushkevich},
title={Expression, Pose, and Illumination Invariant Face Recognition using Lower Order Pseudo Zernike Moments},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={216-221},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004842602160221},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - Expression, Pose, and Illumination Invariant Face Recognition using Lower Order Pseudo Zernike Moments
SN - 978-989-758-003-1
AU - Sultana M.
AU - Gavrilova M.
AU - Yanushkevich S.
PY - 2014
SP - 216
EP - 221
DO - 10.5220/0004842602160221