Doctoral Thesis - A Visual Analysis System for Hierarchical Ensemble Data

Matthias Thurau


Analyzing ensemble data is very challenging due to the complexity of the task. In this paper, I describe IPFViewer, a visual analysis system for ensemble data, that is hierarchical, multidimensional, multivariate and multimodal. That system forms the basis for my doctoral thesis. An exemplary data set comes from a steel production facility and comprises data about their melting charges, samples and defects. My system differs from existing ones in that it encourages the usage of side-by-side visualization of ensemble members. Besides trend analysis, outlier detection and visual exploration, side-by-side visualization of detailed ensemble members enables rapid checking for repeatability of single ensemble member analysis results. IPFViewer supports the following data interaction methods: Hierarchical sorting and filtering, reference data selection, automatic percentile selection and ensemble member aggregation, while the focus for visualization is on small multiples of multiple views.


  1. Fisher, D., Popov, I., Drucker, S., and schraefel, m. (2012). Trust me, i'm partially right: incremental visualization lets analysts explore large datasets faster. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 7812, pages 1673- 1682, New York, NY, USA. ACM.
  2. Kehrer, J. and Hauser, H. (2013). Visualization and visual analysis of multifaceted scientific data: A survey. Visualization and Computer Graphics, IEEE Transactions on, 19(3):495-513.
  3. Konyha, Z., Lez?, A., Matkovic, K., Jelovic, M., and Hauser, H. (2012). Interactive visual analysis of families of curves using data aggregation and derivation. In Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies, i-KNOW 7812, pages 24:1-24:8, New York, NY, USA. ACM.
  4. McCrickard, D. and Catrambone, R. (1999). Beyond the scrollbar: an evolution and evaluation of alternative navigation techniques. In Visual Languages, 1999. Proceedings. 1999 IEEE Symposium on, pages 270- 277.
  5. Mcgill, R., Tukey, J. W., and Larsen, W. A. (1978). Variations of box plots. The American Statistician, 32(1):12-16.
  6. Nocke, T., Flechsig, M., and Bohm, U. (2007). Visual exploration and evaluation of climate-related simulation data. In Simulation Conference, 2007 Winter, pages 703-711.
  7. Pang, A. T., Wittenbrink, C. M., and Lodh, S. K. (1996). Approaches to uncertainty visualization. The Visual Computer, 13:370-390.
  8. Rhodes, P. J., Laramee, R. S., Bergeron, R. D., and Sparr, T. M. (2003). Uncertainty visualization methods in isosurface volume rendering. In Eurographics 2003, Short Papers, pages 83-88.
  9. Tufte, E. (1990). Envisioning information. Graphics Press, Cheshire, CT, USA.
  10. Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). Guidelines for using multiple views in information visualization. In Proceedings of the working conference on Advanced visual interfaces, AVI 7800, pages 110-119, New York, NY, USA. ACM.
  11. Wilson, A. T. and Potter, K. C. (2009). Toward visual analysis of ensemble data sets. In Proceedings of the 2009 Workshop on Ultrascale Visualization, UltraVis 7809, pages 48-53, New York, NY, USA. ACM.

Paper Citation

in Harvard Style

Thurau M. (2014). Doctoral Thesis - A Visual Analysis System for Hierarchical Ensemble Data . In Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2014) ISBN Not Available, pages 52-57

in Bibtex Style

author={Matthias Thurau},
title={Doctoral Thesis - A Visual Analysis System for Hierarchical Ensemble Data},
booktitle={Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2014)},
isbn={Not Available},

in EndNote Style

JO - Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2014)
TI - Doctoral Thesis - A Visual Analysis System for Hierarchical Ensemble Data
SN - Not Available
AU - Thurau M.
PY - 2014
SP - 52
EP - 57
DO -