Bio-inspired Active Vision for Obstacle Avoidance

Manuela Chessa, Saverio Murgia, Luca Nardelli, Silvio P. Sabatini, Fabio Solari

Abstract

Reliable distance estimation of objects in a visual scene is essential for any artificial vision system designed to serve as the main sensing unit on robotic platforms. This paper describes a vision-centric framework for a mobile robot which makes use of bio-inspired techniques to solve visual tasks, in particular to estimate disparity. Such framework features robustness to noise, high speed in data processing, good performance in 3D reconstruction, the possibility to orientate the cameras independently and it requires no explicit estimation of the extrinsic parameters of the cameras. These features permit navigation with obstacle avoidance allowing active exploration of the scene. Furthermore, the modular design allows the integration of new modules with more advanced functionalities.

References

  1. Adelson, E. H. and Bergen, J. R. (1991). The plenoptic function and the elements of early vision. Computational models of visual processing, 91(1):3-20.
  2. Chang, F., Chen, C.-J., and Lu, C.-J. (2004). A linear-time component-labeling algorithm using contour tracing technique. Computer Vision and Image Understanding, 93(2):206-220.
  3. Chen, S., Li, Y., and Kwok, N. M. (2011). Active vision in robotic systems: A survey of recent developments. INT J ROBOT RES, 30(11):1343-1377.
  4. Chen, X. and Chen, H. (2010). A novel color edge detection algorithm in rgb color space. In Signal Processing, 2010 IEEE 10th Int'l Conf. on, pages 793-796. IEEE.
  5. Chessa, M., Bianchi, V., Zampetti, M., Sabatini, S. P., and Solari, F. (2012). Real-time simulation of large-scale neural architectures for visual features computation based on gpu. Network: Computation in Neural Systems, 23(4):272-291.
  6. Chessa, M., Solari, F., and Sabatini, S. P. (2009). A virtual reality simulator for active stereo vision systems. In VISAPP (2), pages 444-449.
  7. Dutta, S. and Chaudhuri, B. B. (2009). A color edge detection algorithm in rgb color space. In Advances in Recent Technologies in Communication and Computing, 2009. ARTCom'09. Int'l Conf. on, pages 337- 340. IEEE.
  8. Fleet, D. J., Wagner, H., and Heeger, D. J. (1996). Neural encoding of binocular disparity: energy models, position shifts and phase shifts. Vision research, 36(12):1839-1857.
  9. Forsyth, D. A. and Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice Hall.
  10. Grigorescu, S. M., Macesanu, G., Cocias, T. T., Puiu, D., and Moldoveanu, F. (2011). Robust camera pose and scene structure analysis for service robotics. Robotics and Autonomous Systems, 59(11):899-909.
  11. Klarquist, W. N. and Bovik, A. C. (1998). Fovea: A foveated vergent active stereo vision system for dynamic three-dimensional scene recovery. Robotics and Automation, IEEE Transactions on, 14(5):755- 770.
  12. Matveev, A. S., Hoy, M. C., and Savkin, A. V. (2013). The problem of boundary following by a unicycle-like robot with rigidly mounted sensors. Robotics and Autonomous Systems, 61(3):312-327.
  13. Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. In Computer Vision and Pattern Recognition, 2003. Proc. 2003 IEEE CS Conf. on, volume 1, pages I-195. IEEE.
Download


Paper Citation


in Harvard Style

Chessa M., Murgia S., Nardelli L., P. Sabatini S. and Solari F. (2014). Bio-inspired Active Vision for Obstacle Avoidance . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: WARV, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 505-512. DOI: 10.5220/0004873705050512


in Bibtex Style

@conference{warv14,
author={Manuela Chessa and Saverio Murgia and Luca Nardelli and Silvio P. Sabatini and Fabio Solari},
title={Bio-inspired Active Vision for Obstacle Avoidance},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: WARV, (VISIGRAPP 2014)},
year={2014},
pages={505-512},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004873705050512},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: WARV, (VISIGRAPP 2014)
TI - Bio-inspired Active Vision for Obstacle Avoidance
SN - 978-989-758-002-4
AU - Chessa M.
AU - Murgia S.
AU - Nardelli L.
AU - P. Sabatini S.
AU - Solari F.
PY - 2014
SP - 505
EP - 512
DO - 10.5220/0004873705050512