SPD-driven Smart Transmission Layer based on a Software Defined Radio Test Bed Architecture

Kresimir Dabcevic, Lucio Marcenaro, Carlo S. Regazzoni


Cognitive Radio as a technological breakthrough and enabler for concepts such as Opportunistic Spectrum Access and Dynamic Spectrum Access has so far received significant attention from the research community from a theoretical standpoint. In this work, we build upon the theoretical foundation and present an implementation of a Software Defined Radio/Cognitive Radio platform, with the feature under particular interest being the so-called Smart Transmission Layer. Smart Transmission Layer is a feature developed within the currently ongoing nSHIELD project, whose goal is establishing new paradigms for Security, Privacy and Dependability (SPD) of the future embedded systems. The role of the SPD-driven Smart Transmission Layer is providing reliable and efficient communications in critical channel conditions by using adaptive and flexible algorithms for dynamically configuring and adapting various transmission-related parameters. The implementation was done on the test bed consisting of two Secure Wideband Multi-role - Single-Channel Handheld Radios (SWAVE HH) coupled with the powerful proprietary multi-processor embedded platforms, and the corresponding auxiliaries. Several case studies were performed, namely: remote control of the radios, analysis of the installed waveforms, interference detection, and spectrum sensing using a quasi-real-time energy detector. A roadmap towards the future implementation aspects using the test bed was set.


  1. Arduino (2013). Arduino uno datasheet. http://arduino.cc/ en/Main/arduinoBoardUno.
  2. Axell, E., Leus, G., Larsson, E., and Poor, H. (2012). Spectrum sensing for cognitive radio : State-of-the-art and recent advances. Signal Processing Magazine, IEEE, 29(3):101-116.
  3. Beagleboard (2013a). Beagleboard system reference manual. http://beagleboard.org/static/ BBSRM latest.pdf.
  4. Beagleboard (2013b). Beagleboard xm system reference manual. http://beagleboard.org/static/ BBxMSRM latest.pdf.
  5. Beagleboard (2013c). Beaglebone system reference manual. http:// beagleboard.org/ static/ beaglebone/ latest/ Docs/ Hardware/ BONE SRM.pdf.
  6. Cabric, D., Tkachenko, A., and Brodersen, R. W. (2006). Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of the first international workshop on Technology and policy for accessing spectrum, TAPAS 7806, New York, NY, USA. ACM.
  7. Dabcevic, K., Marcenaro, L., and Regazzoni, C. S. (2013). Security in cognitive radio networks. In T. D. Lagkas, P. Sarigiannidis, M. L. and Chatzimisios, P., editors, Evolution of Cognitive Networks and Self-Adaptive Communication Systems, pages 301-333. IGI Global.
  8. Esposito, M., Fiaschetti, A., and Flammini, F. (2013). The new shield architectural framework. ERCIM News, 2013(93).
  9. Farrell, R., Sanchez, M., and Corley, G. (2009). Softwaredefined radio demonstrators: An example and future trends. Int. J. Digital Multimedia Broadcasting, 2009.
  10. Fette, B. A. (2006). Cognitive radio technology. Newnes/ Elsevier.
  11. Fiaschetti, A., Suraci, V., and Delli Priscoli, F. (2012). The shield framework: How to control security, privacy and dependability in complex systems. In Complexity in Engineering (COMPENG), 2012, pages 1-4.
  12. Flammini, F., Bologna, S., and Vittorini, V., editors (2011). Computer Safety, Reliability, and Security - 30th International Conference, SAFECOMP 2011, Naples, Italy, September 19-22, 2011. Proceedings, volume 6894 of Lecture Notes in Computer Science. Springer.
  13. Fragkiadakis, A., Tragos, E., and Askoxylakis, I. (2013). A survey on security threats and detection techniques in cognitive radio networks. Communications Surveys Tutorials, IEEE, 15(1):428-445.
  14. Gerrigagoitia, K., Uribeetxeberria, R., Zurutuza, U., and Arenaza, I. (2012). Reputation-based intrusion detection system for wireless sensor networks. In Complexity in Engineering (COMPENG), 2012, pages 1-5.
  15. Gurney, D., Buchwald, G., Ecklund, L., Kuffner, S., and Grosspietsch, J. (2008). Geo-location database techniques for incumbent protection in the tv white space. In New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008. 3rd IEEE Symposium on, pages 1-9.
  16. Lei, Z. and Chin, F. (2008). A reliable and power efficient beacon structure for cognitive radio systems. Broadcasting, IEEE Transactions on, 54(2):182-187.
  17. Li, H., Amer, P. D., and Chamberlain, S. C. (1995). Estelle specification of mil-std 188-220 datalink layer - interoperability standard for digital message transfer device subsystems. In Proceedings of MILCOM 7895.
  18. ManageEngine (2013). Mibbrowser free tool faq. http:// www.manageengine.com/products/mibbrowser-freetool/faq.html.
  19. Memsic (2013). Memsic iris datasheet. http:// www.memsic.com/ userfiles/ files/ Datasheets/ WSN/ IRIS Datasheet.pdf.
  20. Minden, G., Evans, J., Searl, L., DePardo, D., Petty, V., Rajbanshi, R., Newman, T., Chen, Q., Weidling, F., Guffey, J., Datla, D., Barker, B., Peck, M., Cordill, B., Wyglinski, A., and Agah, A. (2007). Kuar: A flexible software-defined radio development platform. In New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, pages 428-439.
  21. Mitola, J. and Maguire, G. Q. Jr. (1999). Cognitive radio: making software radios more personal. Personal Communications, IEEE, 6(4):13-18.
  22. Morerio, P., Dabcevic, K., Marcenaro, L., and Regazzoni, C. (2012). Distributed cognitive radio architecture with automatic frequency switching. In Complexity in Engineering (COMPENG), 2012, pages 1-4.
  23. Rantos, K., Papanikolaou, A., and Manifavas, C. (2013). Ipsec over ieee 802.15.4 for low power and lossy networks. In Proceedings of the 11th ACM International Symposium on Mobility Management and Wireless Access, MobiWac 7813, pages 59-64, New York, NY, USA. ACM.
  24. RaspberryPiFoundation (2013). Raspberry pi home page. http://www.raspberrypi.org/.
  25. SelexES (2013). Swave hh specifications. http:// www.selexelsag.com/internet/localization/IPC/media/ docs/SWave-Handheld-Radio-v1-2012Selex.pdf.
  26. Tague, P. (2010). Improving anti-jamming capability and increasing jamming impact with mobility control. In Mobile Adhoc and Sensor Systems (MASS), 2010 IEEE 7th International Conference on, pages 501- 506.
  27. Tkachenko, A., Cabric, D., and Brodersen, R. (2006). Cognitive radio experiments using reconfigurable bee2. In Signals, Systems and Computers, 2006. ACSSC 7806. Fortieth Asilomar Conference on, pages 2041-2045.
  28. ZEDBoard (2013). Zedboard quick start. http:// www.zedboard.org/sites/default/files/documentations/ GSC-AES-Z7EV-7Z020-G-v1f-press.pdf.
  29. Zolertia (2013). Zolertia z1 revc datasheet. http://zolertia.sourceforge.net/wiki/mages/e/e8/ Z1 RevC Datasheet.pdf.

Paper Citation

in Harvard Style

Dabcevic K., Marcenaro L. and Regazzoni C. (2014). SPD-driven Smart Transmission Layer based on a Software Defined Radio Test Bed Architecture . In Proceedings of the 4th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: MeSeCCS, (PECCS 2014) ISBN 978-989-758-000-0, pages 219-230. DOI: 10.5220/0004876302190230

in Bibtex Style

author={Kresimir Dabcevic and Lucio Marcenaro and Carlo S. Regazzoni},
title={SPD-driven Smart Transmission Layer based on a Software Defined Radio Test Bed Architecture},
booktitle={Proceedings of the 4th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: MeSeCCS, (PECCS 2014)},

in EndNote Style

JO - Proceedings of the 4th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: MeSeCCS, (PECCS 2014)
TI - SPD-driven Smart Transmission Layer based on a Software Defined Radio Test Bed Architecture
SN - 978-989-758-000-0
AU - Dabcevic K.
AU - Marcenaro L.
AU - Regazzoni C.
PY - 2014
SP - 219
EP - 230
DO - 10.5220/0004876302190230