University’s Scientific Resources Processing in Knowledge Management Systems

Zhomartkyzy Gulnaz, Milosz Marek, Balova Tatiana


This article deals with some issues of modern approaches to word processing in knowledge management systems. The method of documents’ profiles formation based on scientific knowledge ontology model which provides the semantic processing and retrieval of information is proposed. The article describes the main stages of the university's information resources word processing to form a semantic document profile: the extraction of terminological collocations, the automatic classification of texts on scientific topics, the formation of a document’s semantic profile.


  1. Allemang, D., Hendler, J., 2011. Semantic Web for the Working Ontologist. Morgan Kaufmann Publisher, Burlington, USA.
  2. Altinçay, H., Erenel, Z., 2010. Analytical evaluation of term weighting schemes for text categorization. In Proceedings of the Pattern Recognition Letters, 1, pp. 1310-1323.
  3. Bolshakov, E., Klyshinsky, E., Lande D., Noskov, A., Peskov, O., Yagunova, E., 2011. Automatic processing of natural language text and computational linguistics. MIEM Publishing House, Russia, 272 p.
  4. Braslavsky, P., Sokolov, ?., 2008. Comparison of five methods for extraction of terms of arbitrary length. In Proceedings of International Conference "Dialogue" - Computational Linguistics and Intelligent Technologies, vol. 7(14). Russia, pp. 67-74.
  5. Ceci, F., Pietrobon, R., Gonçalves, A., 2012. Turning Text into Research Networks: Information Retrieval and Computational Ontologies in the Creation of Scientific Databases. PLoS ONE, vol. 7(1), pp. 1-9.
  6. Cherman, E. A., Monard, M.C., Metz, J., 2011. Multilabel Problem Transformation Methods: a Case Study. Electronic Journal CLEI, vol. 14(1), pp. 4-13.
  7. Du, M., Chen, X., 2013. Accelerated k-nearest neighbours algorithm based on principal component analysis for text categorization. Journal of Zhejiang UniversityScience C-Computers & Electronics, vol. 14(6), pp. 407-416.
  8. Guarino, N., 2009. The Ontological Level: Revisiting 30 Years of Knowledge Representation. Conceptual Modeling: Foundations and Applications, pp. 52-67.
  9. Jiang, J., Tsai, Sh., Lee, Sh., 2012. FSKNN: Multi-label text categorization based on fuzzy similarity and k nearest neighbors. In Proceedings of the Expert Systems with Applications 39, pp. 2813-2821.
  10. Kryukov, K.V., Kuznetsov, O., Suhoverov, V., 2013. On the notion of a formal competency researchers. In Proceedings of III International Scientific and Technical Conference - OSTIS-2013, pp. 143-146.
  11. Liu, Y., Loh Han, T., Sun, A., 2009. Imbalanced text classification: A term weighting approach. In Proceedings of the Expert Systems with Applications, vol. 36, pp. 690-701.
  12. Lukashevich, N.V., 2011. Thesauri in information retrieval tasks. Moscow University Publishing House, Russia, 415 p.
  13. Ma, J., Xu, W., Sun, Y., Turban, E., Wang, Sh., Liu, O., 2012. An Ontology-Based Text-Mining Method to Cluster Proposals for Research Project Selection. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 42(3), pp.784- 790.
  14. Maier, R., 2007. Knowledge Management Systems: Information and Communication Technologies for Knowledge Management, Springer, 3rd edition.
  15. Malarvizhi, P., Ramachandra, V.P., 2013. Multilabel classification of documents with MAPREDUCE. International Journal of Engineering and Technology (IJET), pp.1260-1267.
  16. Manning, Ch.D., Raghavan, P., Schütze, H., 2009. Introduction to Information Retrieval. Cambridge University Press.
  17. Min, J., Josh, C.D., Buzhou, T., Hongxin, C., Hua, X., 2012. Extracting semantic lexicons from discharge summaries using machine learning and the C-Value method. Proceeding of the AMIA Symposium, pp. 409- 416.
  18. Pivovarova, L.M.,Yagunova, E.V., 2010. Extraction and classification of terminological collocations on the material of linguistic scientific texts (preliminary observations). In Proceedings of Symposium: "Terminology and knowledge" Russia, Moscow, [ vlechenie_i_klassifikatsiya_terminoligicheskih_kollok atsyi.pdf].
  19. Sedova, Y.A., Kvyatkovskaya, I.Y., 2011. Intelligent analysis of corps of scientific information. Bulletin of the Astrakhan State Technical University. Series: Management, Computing and Informatics, vol. 1, Russia, pp. 128-136.
  20. Shengyi, J., Guansong, P., Meiling, W., Limin, K., 2012. An improved K-nearest-neighbor algorithm for text categorization. In Proceedings of the Expert Systems with Applications 39, pp. 1503-1509.
  21. State subject heading list of Scientific and Technical Information, [ option=com_content&task=view&id=57&Itemid=6].
  22. Thiagarajan, R., Manjunath, G., Stumptner, M., 2008. Finding Experts By Semantic Matching of User Profiles. HP Laboratories, [ techreports/2008/HPL-2008-172.pdf].

Paper Citation

in Harvard Style

Gulnaz Z., Marek M. and Tatiana B. (2014). University’s Scientific Resources Processing in Knowledge Management Systems . In Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-758-028-4, pages 225-232. DOI: 10.5220/0004886802250232

in Bibtex Style

author={Zhomartkyzy Gulnaz and Milosz Marek and Balova Tatiana},
title={University’s Scientific Resources Processing in Knowledge Management Systems},
booktitle={Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},

in EndNote Style

JO - Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - University’s Scientific Resources Processing in Knowledge Management Systems
SN - 978-989-758-028-4
AU - Gulnaz Z.
AU - Marek M.
AU - Tatiana B.
PY - 2014
SP - 225
EP - 232
DO - 10.5220/0004886802250232