The SITSMining Framework - A Data Mining Approach for Satellite Image Time Series

Bruno F. Amaral, Daniel Y. T. Chino, Luciana A. S. Romani, Renata R. V. Gonçalves, Agma J. M. Traina, Elaine P. M. Sousa

Abstract

The amount of data generated and stored in many domains has increased in the last years. In remote sensing, this scenario of bursting data is not different. As the volume of satellite images stored in databases grows, the demand for computational algorithms that can handle and analyze this volume of data and extract useful patterns has increased. In this context, the computational support for satellite images data analysis becomes essential. In this work, we present the SITSMining framework, which applies a methodology based on data mining techniques to extract patterns and information from time series obtained from satellite images. In Brazil, as the agricultural production provides great part of the national resources, the analysis of satellite images is a valuable way to help crops monitoring over seasons, which is an important task to the economy of the country. Thus, we apply the framework to analyze multitemporal satellite images, aiming to help crop monitoring and forecasting of Brazilian agriculture.

References

  1. Berndt, D. and Clifford, J. (1994). Using dynamic time warping to find patterns in time series. In AAAI Workshop on Knowledge Discovery in Databases, pages 359-370, Seattle - Washington.
  2. Chino, D. Y. T., Amaral, B. F., Romani, L. A. S., Sousa, E. P. M., and Traina, A. J. M. (2011). Satimagexplorer: tornando a minerac¸a˜o de dados de sensores orbitais mais flexível. In VIII SBBD, pages 25-30, Brasil.
  3. Csiszar, I. and Gutman, G. (1999). Mapping global land surface albedo from noaa avhrr. Journal of Geophysical Research, 104(d6):6215-6228.
  4. Freitas, R. M., Arai, E., Adami, M., Souza, A. F., Sato, F. Y., Shimabukuro, Y. E., Rosa, R. R., Anderson, L. O., and Rudorff, B. F. T. (2011). Virtual laboratory of remote sensing time series: visualization of modis evi2 data set over south america. Journal of Computational Interdisciplinary Sciences, 2(1):57-68.
  5. Han, J. and Kamber, M. (2000). Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco.
  6. Julea, A., Méger, N., Bolon, P., Rigotti, C., Doin, M.-P., Lasserre, C., Trouvé, E., and Lazarescu, V. N. (2011). Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns. Geoscience and Remote Sensing, IEEE Transactions on, 49(4):1417-1430.
  7. Keogh, E. J. and Pazzani, M. J. (1998). An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In KDD 1998, volume 98, pages 239-243.
  8. Kyrgyzov, I. O., Maitre, H., and Campedel, M. (2007). A method of clustering combination applied to satellite image analysis. In Image Analysis and Processing, 2007. 14th International Conference on, pages 81-86.
  9. Maimon, O. and Rokach, L. (2005). The Data Mining and Knowledge Discovery Handbook. Springer.
  10. Mitsa, T. (2010). Temporal Data Mining. Chapman & Hall/CRC, 1st edition.
  11. Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS, volume 1, pages 309-317. NASA.
  12. Vaduva, C., Costachioiu, T., Patrascu, C., Gavat, I., Lazarescu, V., and Datcu, M. (2011). Classification of dynamic evolutions from satellitar image time series based on similarity measures. In Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 2011 6th International Workshop on the, pages 141-144.
  13. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., and Keogh, E. (2003). Indexing multi-dimensional timeseries with support for multiple distance measures. In KDD 2003, pages 216-225, New York.
Download


Paper Citation


in Harvard Style

F. Amaral B., Y. T. Chino D., A. S. Romani L., R. V. Gonçalves R., J. M. Traina A. and P. M. Sousa E. (2014). The SITSMining Framework - A Data Mining Approach for Satellite Image Time Series . In Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-027-7, pages 225-232. DOI: 10.5220/0004894002250232


in Bibtex Style

@conference{iceis14,
author={Bruno F. Amaral and Daniel Y. T. Chino and Luciana A. S. Romani and Renata R. V. Gonçalves and Agma J. M. Traina and Elaine P. M. Sousa},
title={The SITSMining Framework - A Data Mining Approach for Satellite Image Time Series},
booktitle={Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2014},
pages={225-232},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004894002250232},
isbn={978-989-758-027-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - The SITSMining Framework - A Data Mining Approach for Satellite Image Time Series
SN - 978-989-758-027-7
AU - F. Amaral B.
AU - Y. T. Chino D.
AU - A. S. Romani L.
AU - R. V. Gonçalves R.
AU - J. M. Traina A.
AU - P. M. Sousa E.
PY - 2014
SP - 225
EP - 232
DO - 10.5220/0004894002250232