Descriptive Models of Emotion - Learning Useful Abstractions from Physiological Responses during Affective Interactions

Rui Henriques, Ana Paiva

Abstract

Supervised recognition of emotions from physiological signals has been widely accomplished to measure affective interactions. Less attention is, however, placed upon learning descriptive models to characterize physiological responses. In this work we delve on why and how to learn discriminative, complete and usable descriptive models based on physiological signals from emotion-evocative stimuli. By satisfying these three properties, we guarantee that the target descriptors can be expressively adopted to understand the physiological behavior underlying multiple emotions. In particular, we explain why classification and unsupervised learning models do not address these properties, and point new directions on how to adapt existing learners to met them based on theoretical and empirical evidence.

References

  1. Andreassi, J. (2007). Psychophysiology: Human Behavior And Physiological Response. Lawrence Erlbaum.
  2. Berthold, M. and Hand, D. J., editors (1999). Intelligent Data Analysis: An Introduction. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition.
  3. Bos, D. O. (2006). Eeg-based emotion recognition the influence of visual and auditory stimuli. Emotion, 57(7):1798-806.
  4. Brand, M. (1999). Structure learning in conditional probability models via an entropic prior and parameter extinction. Neural Comput., 11(5):1155-1182.
  5. Brown, M., Hughey, R., Krogh, A., Mian, I. S., Sjölander, K., and Haussler, D. (1993). Using dirichlet mixture priors to derive hidden markov models for protein families. In Int. Sys. for Molecular Bio., pages 47-55. AAAI Press.
  6. Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121-167.
  7. Cacioppo, J., Tassinary, L., and Berntson, G. (2007). Handbook of psychophysiology. Cambridge University Press.
  8. Ekman, P. and W., F. (1988). Universals and cultural differences in the judgments of facial expressions of emotion. Personality and Social Psychology, 53:712-717.
  9. Exarchos, T., Tsipouras, M., Papaloukas, C., and Fotiadis, D. (2008). A two-stage methodology for sequence classification based on sequential pattern mining and optimization. Data Knowl. Eng., 66(3):467-487.
  10. Geurts, P. (2001). Pattern extraction for time series classification. In PKDD, pages 115-127, London, UK. Springer-Verlag.
  11. Guimara˜es, G. (2000). The induction of temporal grammatical rules from multivariate time series. In Colloquium on Grammatical Inference: Alg. and App., pages 127- 140, London, UK. Springer-Verlag.
  12. Haag, A., Goronzy, S., Schaich, P., and Williams, J. (2004). Emotion recognition using bio-sensors: First steps towards an automatic system. In Affective D.Sys., volume 3068 of LNCS, pages 36-48. Springer.
  13. Han, J., Cheng, H., Xin, D., and Yan, X. (2007). Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov., 15(1):55-86.
  14. Henriques, R. and Antunes, C. (2014). Learning predictive models from integrated healthcare data: Capturing temporal and cross-attribute dependencies. In HICSS. IEEE.
  15. Henriques, R. and Paiva, A. (2014). Seven principles to mine flexible behavior from physiological signals for effective emotion recognition and description in affective interactions. In PhyCS.
  16. Henriques, R., Paiva, A., and Antunes, C. (2012). On the need of new methods to mine electrodermal activity in emotion-centered studies. In AAMAS'12, 8th IW on ADMI. Springer-Verlag LNAI series.
  17. Henriques, R., Paiva, A., and Antunes, C. (2013). Accessing emotion patterns from affective interactions using electrodermal activity. In Affective Comp. and Intel. Interaction (ACII). IEEE Computer Society.
  18. Jerritta, S., Murugappan, M., Nagarajan, R., and Wan, K. (2011). Physiological signals based human emotion recognition: a review. In CSPA, 2011 IEEE 7th International Colloquium on, pages 410 -415.
  19. Kulic, D. and Croft, E. A. (2007). Affective state estimation for human-robot interaction. Trans. Rob., 23(5):991- 1000.
  20. Lang, P. (1995). The emotion probe: Studies of motivation and attention. American psychologist, 50:372-372.
  21. Leite, I., Henriques, R., Martinho, C., and Paiva, A. (2013). Sensors in the wild: Exploring electrodermal activity in child-robot interaction. In HRI, pages 41-48. ACM/IEEE.
  22. Lessard, C. S. (2006). Signal Processing of Random Physiological Signals. S.Lectures on Biomedical Eng. Morgan and Claypool Publishers.
  23. Li, W., Han, J., and Pei, J. (2001). Cmar: Accurate and efficient classification based on multiple class-association rules. In ICDM, pages 369-376. IEEE CS.
  24. Liu, H. and Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Pub.
  25. Maaoui, C., Pruski, A., and Abdat, F. (2008). Emotion recognition for human-machine communication. In IROS, pages 1210 -1215. IEEE/RSJ.
  26. Madeira, S., Teixeira, M. N. P. C., Sá-Correia, I., and Oliveira, A. (2010). Identification of regulatory modules in time series gene expression data using a linear time biclustering algorithm. IEEE/ACM TCBB, 1:153-165.
  27. Madeira, S. C. and Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 1(1):24-45.
  28. Mitsa, T. (2009). Temporal Data Mining. DMKD. Chapman & Hall/CRC.
  29. Mörchen, F. (2006). Time series knowledge mining. Wissenschaft in Dissertationen. Görich & Weiershäuser.
  30. Mueen, A., Keogh, E. J., Zhu, Q., Cash, S., and Westover, M. B. (2009). Exact discovery of time series motifs. In SDM, pages 473-484.
  31. Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, UC Berkeley, CS Division.
  32. Nanopoulos, A., Alcock, R., and Manolopoulos, Y. (2001). Information processing and technology. chapter Feature-based classification of time-series data, pages 49-61. Nova Science Pub.
  33. Oatley, K., Keltner, and Jenkins (2006). Understanding Emotions. Blackwell P.
  34. Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-Computer Studies, 59(1-2):55-64.
  35. Picard, R. W., Vyzas, E., and Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell., 23(10):1175-1191.
  36. Povinelli, R. J., Johnson, M. T., Lindgren, A. C., and Ye, J. (2004). Time series classification using gaussian mixture models of reconstructed phase spaces. IEEE Trans. on Knowl. and Data Eng., 16(6):779-783.
  37. Rabiner, L. and Juang, B. (2003). An introduction to hidden Markov models. ASSP Magazine, 3(1):4-16.
  38. Rani, P., Liu, C., Sarkar, N., and Vanman, E. (2006). An empirical study of machine learning techniques for affect recognition in human-robot interaction. Pattern Anal. Appl., 9(1):58-69.
  39. Surendiran, B. and Vadivel, A. (2011). Feature selection using stepwise anova discriminant analysis for mammogram mass classification. IJ on Signal Image Proc., 2(1):4.
  40. Tseng, V. and Lee, C.-H. (2009). Effective temporal data classification by integrating sequential pattern mining and probabilistic induction. Expert Sys.App., 36(5):9524-9532.
  41. Wagner, J., Kim, J., and Andre, E. (2005). From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. In ICME, pages 940 -943. IEEE.
  42. Wang, M., Shang, X., Zhang, S., and Li, Z. (2010). Fdcluster: Mining frequent closed discriminative bicluster without candidate maintenance in multiple microarray datasets. In ICDM Workshops, pages 779-786. IEEE CS.
  43. Wu, C.-K., Chung, P.-C., and Wang, C.-J. (2011). Extracting coherent emotion elicited segments from physiological signals. In WACI, pages 1-6. IEEE.
Download


Paper Citation


in Harvard Style

Henriques R. and Paiva A. (2014). Descriptive Models of Emotion - Learning Useful Abstractions from Physiological Responses during Affective Interactions . In Proceedings of the International Conference on Physiological Computing Systems - Volume 1: OASIS, (PhyCS 2014) ISBN 978-989-758-006-2, pages 393-400. DOI: 10.5220/0004902703930400


in Bibtex Style

@conference{oasis14,
author={Rui Henriques and Ana Paiva},
title={Descriptive Models of Emotion - Learning Useful Abstractions from Physiological Responses during Affective Interactions},
booktitle={Proceedings of the International Conference on Physiological Computing Systems - Volume 1: OASIS, (PhyCS 2014)},
year={2014},
pages={393-400},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004902703930400},
isbn={978-989-758-006-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Physiological Computing Systems - Volume 1: OASIS, (PhyCS 2014)
TI - Descriptive Models of Emotion - Learning Useful Abstractions from Physiological Responses during Affective Interactions
SN - 978-989-758-006-2
AU - Henriques R.
AU - Paiva A.
PY - 2014
SP - 393
EP - 400
DO - 10.5220/0004902703930400