SmartCoping - A Mobile Solution for Stress Recognition and Prevention

Edith Maier, Ulrich Reimer, Emanuele Laurenzi, Monika Ridinger, Tom Ulmer

Abstract

The paper describes the development of a mobile solution based on smartphones and sensors for the early recognition of stress. The solution is based on real-time capture and analysis of vital data such as heart rate variability as well as activity and contextual data such as location and time of day. Individual recognition patterns for stress are derived from combining vital and contextual data by using subjective stress assessments via mood maps as additional input during an initial learning phase. The reliability of stress alerts and therapeutic impact will be tested in a clinic specialised on the treatment of alcoholics since stress tends to cause craving and therefore trigger relapses.

References

  1. Angelucci, F. L., Silva, V. V., Dal Pizzol, C., Spir, L. G., Praes, C. E., Maibach, H., 2013. Physiological effect of olfactory stimuli inhalation in humans: an overview. Int J Cosmet Sci, Sep 30. doi: 10.1111/ics.12096.
  2. Bilchick, K.C., Berger, R. D., 2006. Heart Rate Variability. In J Cardiovasc Electrophysiol, vol. 17, no. 6, pp. 691-694.
  3. Clarke, T. K., Dempster, E., Docherty, S. J., Desrivieres, S., Lurdsamy, A., Wodarz, N., Ridinger, M., Maier, W., Rietschel, M., Schumann, G., 2010. Multiple polymorphisms in genes of the adrenergic stress system confer vulnerability to alcohol abuse. Addiction Biology, no. 1, pp. 202-208.
  4. Clifford, G., 2007. ECG Statistics, Noise, Artifacts, and Missing Data. In Acharya, R. U., Suri, J. S., Spaan, J. A. E., Krishnan, S.M. (eds). Advanced Methods and Tools for ECG Data Analysis. Artech House, Boston.
  5. Delaney, J. P. A., Brodie, D. A., 2000. Effects of ShortTerm Psychological Stress on the Time and Frequency Domains of Heart-Rate Variability. Perceptual and Motor Skills, no. 91, pp. 514-524.
  6. Fagard, R. H., Pardaens, K., Staessen, J. A., Thijs, L., 1998. Power spectral analysis of heart rate variability by autoregressive modelling and fast Fourier transform: A Comparative Study. Acta Cardiologica, vol. 53, no. 4, pp. 211-218.
  7. Fliege, H., Rose, M., Arck, P., Walter, O. B., Kocalevent, R. D., Weber, C., & Klapp, B. F., 2005. The Perceived Stress Questionnaire (PSQ) reconsidered: validation and reference values from different clinical and healthy adult samples. Psychosomatic medicine, vol. 67, no. 1, pp. 78-88.
  8. Hasson, D., Theorell, T., Bergquist, J., Canlon, B., 2013. Acute stress induces hyperacusis in women with high levels of emotional exhaustion. PLOS, vol. 8, no. 4, doi: 10.1371.
  9. Legendre, A., Harris, R., 2006. Exaggerated response to mild stress in rats fed high-fat diet. American Journal of Physiology - Regulatory, Integrative, and Comparative Physiology, vol. 291 no. 5, pp. 1288-1294.
  10. Lehrer, P., 2013. How Does Heart Rate Variability Biofeedback Work? Resonance, the Baroreflex, and Other Mechanisms. Biofeedback, vol. 41, no. 1, pp. 26-31.
  11. Mandryk, R., Atkins, M. 2007. A fuzzy physiological approach for continuously modelling emotion during interaction with play environments. International Journal of Human-Computer Studies, vol. 6, no. 4, pp. 329-347.
  12. Morris, M., Guilak, F., 2009. Mobile heart health: Project highlight. IEEE Pervasive Computing, vol. 8, no. 2, pp. 57-61.
  13. Ornish, D., Brown, S., Scherwitz, L., Billings, J., Armstrong, W., Ports, T., McLanahan, S., Kirkeeide, R., Brand, R., Gould K., 1990. Can lifestyle changes reverse coronary heart disease?. Lancet vol. 336, no. 8708, pp. 129-133.
  14. Reimer, U., Maier, E., Streit, S., Diggelmann, T., Hoffleisch, M., 2011. Learning a Lightweight Ontology for Semantic Retrieval in Patient-Centered Information Systems. International Journal of Knowledge Management, vol. 7, no. 3, pp. 11-26.
  15. Ritter, W., 2009. Measuring Psychophysiological Signals in Every-Day Situations. In Proceedings of HCI International.
  16. Riva, G., Baños, R., Botella, C., Gaggioli, A., Wiederhold, B. K., 2011. Personal Health Systems for Mental Health: The European Projects. In Westwood, J. D., Westwood, S. W., Felländer-Tsai, L., Haluck, R. S., Hoffman, H. M., Robb, R. A., Senger, S., Vosburgh, K. G. (eds), Medicine Meets Virtual Reality. IOS Press.
  17. Sakakibara, M., Hayano, J., Oikawa, L., Katsamanis, M., Lehrer, P., 2013. Heart Rate Variability Biofeedback Improves Cardiorespiratory Resting Function During Sleep. Applied Psychophysiology and Biofeedback, pp. 1-7.
  18. Sinha, R., 2013. The clinical neurobiology of drug craving. Curr Opin Neurobiol, vol. 23, no. 4, pp. 649-654.
  19. Swan, M., 2012. Health 2050: The realization of personalized medicine through crowdsourcing, the Quantified Self, and the participatory biocitizen. Journal of Personalized Medicine, vol. 2, no. 3, pp. 93-118.
Download


Paper Citation


in Harvard Style

Maier E., Reimer U., Laurenzi E., Ridinger M. and Ulmer T. (2014). SmartCoping - A Mobile Solution for Stress Recognition and Prevention . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014) ISBN 978-989-758-010-9, pages 428-433. DOI: 10.5220/0004903704280433


in Bibtex Style

@conference{healthinf14,
author={Edith Maier and Ulrich Reimer and Emanuele Laurenzi and Monika Ridinger and Tom Ulmer},
title={SmartCoping - A Mobile Solution for Stress Recognition and Prevention},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014)},
year={2014},
pages={428-433},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004903704280433},
isbn={978-989-758-010-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014)
TI - SmartCoping - A Mobile Solution for Stress Recognition and Prevention
SN - 978-989-758-010-9
AU - Maier E.
AU - Reimer U.
AU - Laurenzi E.
AU - Ridinger M.
AU - Ulmer T.
PY - 2014
SP - 428
EP - 433
DO - 10.5220/0004903704280433