SYNC-SOM - Double-layer Oscillatory Network for Cluster Analysis

A. V. Novikov, E. N. Benderskaya

Abstract

Despite partial synchronization in the oscillatory networks based on Kuramoto model can be used for cluster analysis, convergence rate of synchronization processes depends on number of oscillators and number of links between oscillators. Moreover result of clustering depends on radius of connectivity that should be chosen in line with input data. We propose double-layer oscillatory network for the two problems. Our network relevant in situation when fast solution is required and when input data should be clustering without expert estimations. In this paper, we presented results of experiments that confirmed better quality then traditional algorithms.

References

  1. Acebron, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F., and Spigler, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of modern physics, 77, 137-185.
  2. Anil, K., Dubes, J. C., Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, New Jersey.
  3. Arenas, A., Diaz-Guilera, A., Kurths, Y. Moreno, Y. Zhou, C. (2008). Synchronization in complex networks. Physics Reports, 469, 93-153.
  4. Basar, E., (1998). Brain function and oscillations. Springer-Varlag, New York.
  5. Benderskaya, E. N., Zhukova, S. V. (2009). LargeDimension Image Clustering by Means of Fragmentary Synchronization in Chaotic Systems. Pattern Recognition and Image Analysis, vol. 10, no. 2, 306- 316.
  6. Bohm, C., Plant, C., Shao, J., Yang, Q. (2010). Clustering by synchronization. KDD 7810 Proceeding of the 16th ACM SIGKDD international conference of Knowledge discovery and data mining, 583-592.
  7. Costa, J. A. F., Hujun, Y. (2010). Gradient-based SOM Clustering and Visualisation Methods. In Proc. of the 2010 International Joint Conference on Neural Networks.
  8. Cumin, D., Unsworth, C. P. (2006). Generalizing the Kuramoto Model for the Study of Neuronal Synchronisation in the Brain. Report University of Auckland School of Engineering, 638.
  9. Ester, M., Kriegel, H., Sander, J., Xu, Xiaowei, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. of the 2th Int. Conf. on Knowledge Discovery and Data Mining, 226- 231.
  10. Guha, S., Rastogi, R., Shim, K. (2000). ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Proc. of the 15th Int. Conf. on Data Engineering.
  11. Haken, H., (2007). Brain Dynamics, Springer-Verlag, Berlin Neidelberg.
  12. Haykin, S. (1999). Neural networks: A comprehensive foundation. Macmillan College Publishing Company, New York, 2nd edition.
  13. Kohonen, T. (2001). Self-Organizing Maps. 3nd edition, Berlin: Springer.
  14. Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Berlin: Springer.
  15. MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Proc. Fifth Berkley Symp. Math. Statistics and Probability, vol. 1, 281-297.
  16. Miyano, T., Tsutsui, T. (2007). Data Synchronization as a Method of Data Mining. International Symposium on Nonlinear Theory and its Applications.
  17. Novikov, A.V., Benderskaya E.N. (2013). The Oscillatory Neural Networks Based on Kuramoto Model for Cluster Analysis. The 11th International Conference "Pattern Recognition and Image Analysis: New Information Technologies" (PRIA-11-2013), vol. 1, 106- 109.
  18. Ultsch, A. (2005). Clustering with SOM: U*C. Proceedings Workshop on Self Organizing Feature Maps. Paris, France. 31-37.
  19. Wang, X., Jiao, L Wu. J. (2009). Extracting hierarchical organization of complex networks by dynamics towards synchronization. Physica A, 388, 2975-2986.
Download


Paper Citation


in Harvard Style

Novikov A. and Benderskaya E. (2014). SYNC-SOM - Double-layer Oscillatory Network for Cluster Analysis . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 305-309. DOI: 10.5220/0004906703050309


in Bibtex Style

@conference{icpram14,
author={A. V. Novikov and E. N. Benderskaya},
title={SYNC-SOM - Double-layer Oscillatory Network for Cluster Analysis},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={305-309},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004906703050309},
isbn={978-989-758-018-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - SYNC-SOM - Double-layer Oscillatory Network for Cluster Analysis
SN - 978-989-758-018-5
AU - Novikov A.
AU - Benderskaya E.
PY - 2014
SP - 305
EP - 309
DO - 10.5220/0004906703050309