Studies of Mutation Accumulation in Three Codon Positions using Monte Carlo Simulations and Metropolis-Hastings Algorithm

Małgorzata Grabińska, Pawel Blazej, Paweł Mackiewicz


Protein coding sequences are characterized by specific nucleotide composition in three codon positions as a result of mutational and selection pressures. To analyse the impact of mutations and different transition/transversion ratio on three codon position in protein coding sequences, we elaborated a model of genome evolution based Monte Carlo simulation. Selection was applied against stop translation codons and modified Metropolis-Hastings algorithm to maintain typical nucleotide composition of particular codon positions. The simulations were performed on genomes consisting of bacterial gene sequences. We used a series of nucleotide substitution matrices assuming different transition/transversion ratio and nucleotide stationary distribution characteristic of the real mutational pressure. The simulations showed exponential decrease in the number of eliminated genomes with the growth of the transition/transversion ratio. The same trend was also observed both for accepted and to lesser extent for rejected mutations. The third codon positions much more mutations accepted than rejected because of very similar composition to the mutational stationary distribution, whereas the first positions accumulated the smallest number of mutations and rejected the most as a result of strong selection on its nucleotide composition. The obtained results showed different response of three codon positions on mutational pressure related with their characteristic nucleotide composition.


  1. Akashi, H. (2003). Translational selection and yeast proteome evolution. Genetics, 164:1291-1303.
  2. Anderson, S. G. E. and Kurland, C. G. (1990). Codon preferences in free-living microorganisms. Microbiol. Rev., 54:198-210.
  3. Bennetzen, J. L. and Hall, B. D. (1982). Codon selection in yeast. J Biol Chem, 257(6):3026-3031.
  4. Blaz?ej, P., Mackiewicz, P., and Cebrat, S. (2012). Simulation of bacterial genome evolution under replicational mutational pressures. In Proceedings of the BIOSTEC 2012, 5th International Joint Conference on Biomedical Engineering Systems and Technologies Bioinformatics 2012, International Conference on Bioinformatics Models, Methods and Algorithms, Vilamoura, Algarve, Portugal, 1-4 February, pages 51-57.
  5. Cebrat, S. and Dudek, M. (1998). The effect of DNA phase structure on DNA walks. The European Physical Journal B-Condensed Matter and Complex Systems, 3(2):271-276.
  6. Cebrat, S., Dudek, M. R., Gierlik, A., Kowalczuk, M., and Mackiewicz, P. (1999). Effect of replication on the third base of codons. Physica A, 265:78-84.
  7. Cebrat, S., Dudek, M. R., and Mackiewicz, P. (1998). Sequence asymmetry as a parameter indicating coding sequence in Saccharomyces cerevisiae genome. Theory in Biosciences, 117:78-89.
  8. Cebrat, S., Dudek, M. R., Mackiewicz, P., Kowalczuk, M., and Fita, M. (1997a). Asymmetry of coding versus non-coding strands in coding sequences of different genomes. Microbial & Comparative Genomics, 2:259-268.
  9. Cebrat, S., Dudek, M. R., and Rogowska, A. (1997b). Asymmetry in nucleotide composition of sense and antisense strands as a parameter for discriminating open reading frames as protein coding sequences. J. Appl. Genet., 38:1-9.
  10. Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4):327-335.
  11. Das, S., Ghosh, S., Pan, A., and Dutta, C. (2005). Compositional variation in bacterial genes and proteins with potential expression level. FEBS Letters, 579:5205- 5210.
  12. Echols, H. and Goodman, M. F. (1991). Fidelity mechanisms in DNA replication. Annu Rev Biochem, 60:477-511.
  13. Frank, A. and Lobry, J. (1999). Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene, 238:65-77.
  14. Freeman, J., Plasterer, T., Smith, T., and Mohr, S. (1998). Patterns of genome organization in bacteria. Science, 279:1827.
  15. Gutierrez, G., Marquez, L., and Martin, A. (1996). Preference for guanosine at first codon position in highly expressed Escherichia coli genes. a relationship with translation efficiency. Nucleic Acids Res., 24:2525- 2528.
  16. and Hutchinson, F. (1996). Mutagenesis. In Neidhardt, F. C., editor, Escherichia coli and Salmonella. Cellular and molecular biology, pages 749-763. Asm. Press, Washington D.C.
  17. Ikemura, T. (1981). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol, 146(1):1-21.
  18. Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol., 2:1334.
  19. Kanaya, S., Yamada, Y., Kudo, Y., and Ikemura, T. (1999). Studies of codon usage and trna genes of 18 unicellular organisms and quantification of Bacillus subtilis trnas: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene, 238(1):143-155.
  20. Karlin, S., Blaisdell, B. E., and Bucher, P. (1992). Quantile distributions of amino acid usage in protein classes. Protein Eng, 5(8):729-738.
  21. Karlin, S. and Burge, C. (1995). Dinucleotide relative abundance extremes: a genomic signature. Trends Genet, 11(7):283-290.
  22. Karlin, S. and Mrazek, J. (1996). What drives codon choices in human genes? J Mol Biol, 262(4):459-472.
  23. Kowalczuk, M., Gierlik, A., Mackiewicz, P., Cebrat, S., and Dudek, M. (1999). Optimization of gene sequences under constant mutational pressure and selection. Physica A: Statistical Mechanics and its Applications, 273(1):116-131.
  24. Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka, A., Dudkiewicz, M., Dudek, M., and Cebrat, S. (2001a). High correlation between the turnover of nucleotides under mutational pressure and the DNA composition. BMC Evol. Biol., 1:13.
  25. Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka, A., Dudkiewicz, M., Dudek, M. R., and Cebrat, S. (2001b). DNA asymmetry and the replicational mutational pressure. J. Appl. Genet., 42(4):553-577.
  26. Kreutzer, D. A. and Essigmann, J. M. (1998). Oxidized, deaminated cytosines are a source of C ! T transitions in vivo. Proc Natl Acad Sci U S A, 95(7):3578- 3582.
  27. Lagunez-Otero, J. and Trifonov, E. N. (1992). mRNA periodocal infrastructure complementary to the proofreading site in the ribosome. J. Biomol. Struct. Dyn., 10:455-464.
  28. Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422):709-715.
  29. Mackiewicz, P., Gierlik, A., Kowalczuk, M., Dudek, M., and Cebrat, S. (1999a). Asymmetry of nucleotide composition of prokaryotic chromosomes. J. Appl. Genet., 40:1-14.
  30. Inerney, J. (1998). Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc. Natl. Acad. Sci. U.S.A., 95:10698-10703.
  31. McLean, M., Wolfe, K., and Devine, K. (1998). Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol., 47:691-696.
  32. Mellon, I. and Hanawalt, P. C. (1989). Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature, 342(6245):95-98.
  33. Pan, A., Dutta, C., and Das, J. (1998). Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis: translational selection versus mutational bias. Gene, 215:405-413.
  34. Sharp, P. M. and Cowe, E. (1991). Synonymous codon usage in Saccharomyces cerevisiae. Yeast, 7(7):657- 678.
  35. Shepherd, J. C. (1981). Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification. Proc. Natl. Acad. Sci. USA, 78:1596-1600.
  36. Smithies, O., Engels, W. R., Devereux, J. R., Slightom, J. L., and Shen, S. (1981). Base substitutions, length differences and DNA strand asymmetries in the human g gamma and a gamma fetal globin gene region. Cell, 26:345-353.
  37. Tijms, H. (2003). A first course in stochastic processes. John Wiley & Sons LTD.
  38. Tillier, E. and Collins, R. (2000). The contributions of replication orientation, gene direction, and signal sequences to base composition asymmetries in bacterial genomes. J. Mol. Evol., 50:249-257.
  39. Trifonov, E. N. (1987). Translation framing code and framemonitoring mechanism as suggested by the analysis of mRNA and 16S rRNA nucleotide sequences. J. Mol. Biol., 194:643-652.
  40. Trifonov, E. N. (1992). Recognition of correct reading frame by the ribosome. Biochimie, 74:357-362.
  41. Wakeley, J. (1996). The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends in Ecology and Evolution, 11:158-163.
  42. Wang, J. (1998). The base contents of A, C, G, or U for three codon positions and the total coding sequences show positive correlation. J. Biomol. Struct. Dyn., 16:51-57.
  43. Wong, J. T. and Cedergren, R. (1986). Natural selection versus primitive gene structure as determinant of codon usage. Eur. J. Biochem., 159:175-180.
  44. Zhang, C. T. and Zhang, R. (1991). Analysis of distribution of bases in codon in the coding sequences by a diagrammatic technique. Nucleic Acids Res., 19:6313- 6317.

Paper Citation

in Harvard Style

Grabińska M., Blazej P. and Mackiewicz P. (2014). Studies of Mutation Accumulation in Three Codon Positions using Monte Carlo Simulations and Metropolis-Hastings Algorithm . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 245-252. DOI: 10.5220/0004911502450252

in Bibtex Style

author={Małgorzata Grabińska and Pawel Blazej and Paweł Mackiewicz},
title={Studies of Mutation Accumulation in Three Codon Positions using Monte Carlo Simulations and Metropolis-Hastings Algorithm},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},

in EndNote Style

JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - Studies of Mutation Accumulation in Three Codon Positions using Monte Carlo Simulations and Metropolis-Hastings Algorithm
SN - 978-989-758-012-3
AU - Grabińska M.
AU - Blazej P.
AU - Mackiewicz P.
PY - 2014
SP - 245
EP - 252
DO - 10.5220/0004911502450252