Towards Automated Video Analysis of Sensorimotor Assessment Data

Ana B. Graciano Fouquier, Séverine Dubuisson, Isabelle Bloch

Abstract

Sensorimotor assessment aims at evaluating sensorial and motor capabilities of children who are likely to present a pervasive developmental disorder, such as autism. It relies on playful activities which are proposed by a psychomotrician expert to the child, with the intent of observing how the latter responds to various physical and cognitive stimuli. Each session is recorded so that the psychomotrician can use the video as a support for reviewing in-session impressions and drawing final conclusions. These recordings carry a wealth of information that could be exploited for research purposes and contribute to a better understanding of autism spectrum disorders. However, the systematic inspection of these data by clinical professionals would be time-consuming and impracticable. In order to make these analyses feasible, we discuss a computer vision approach to prospect behavior information from the available visual data acquired throughout assessment sessions.

References

  1. Albiol, A., Torres, L., and Delp, E. (2001). Optimum color spaces for skin detection. In Proc. IEEE Int. Conf. Image Process., volume 1, pages 122-124.
  2. Bernard, J. et al. (2006). Evolution de la fréquence des gestes chez des garc¸ons avec autisme aˆgés de 1 à 3 ans par analyse de vidéos familiales. Devenir, 18(3):245- 261.
  3. Bullinger, A. (2006). Approche sensorimotrice des troubles envahissants du développement. Contraste, 2(25):125-139.
  4. Hashemi, J. et al. (2012). A computer vision approach for the assessment of autism-related behavioral markers. In Proc. IEEE Int. Conf. Development and Learning and Epigenetic Robotics (ICDL), pages 1-7.
  5. Jones, M. J. and Rehg, J. M. (2002). Statistical color models with application to skin detection. Int. J. Comput. Vision, 46(1):81-96.
  6. Jutard, C., Kloeckner, A., Périsse, D., and Cohen, D. (2009). Intéreˆt de l'abord sensorimoteur dans les pathologies autistiques sévères II : illustration clinique. Neuropsychiatrie de l'Enfance et de l'Adolescence, 57(2):160 - 165.
  7. Kloeckner, A. et al. (2009). Intéreˆt de l'abord sensorimoteur dans les pathologies autistiques sévères I : introduction aux travaux d'André Bullinger. Neuropsychiatrie de l'Enfance et de l'Adolescence, 57(2):154 - 159.
  8. Mahoor, M. et al. (2009). A framework for automated measurement of the intensity of non-posed facial action units. In IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recognition Workshops, pages 74-80.
  9. Matas, J., Galambos, C., and Kittler, J. (2000). Robust detection of lines using the progressive probabilistic hough transform. Comput. Vision and Image Understanding, 78(1):119-137.
  10. Pérez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002). Color-based probabilistic tracking. In Proc. European Conf. Comput. Vision, pages 661-675.
  11. Porayska-Pomsta, K. et al. (2012). Developing technology for autism: an interdisciplinary approach. Personal Ubiquitous Comput., 16(2):117-127.
  12. Rehg, J. M. (2011). Behavior imaging: Using computer vision to study autism. In IAPR Conf. Mach. Vision Appl., pages 14-19.
  13. Rehg, J. M. et al. (2013). Decoding children's social behavior. In Proc. IEEE Comp. Soc. Conf. Comput. Vision and Pattern Recognition, pages 3414-3421.
  14. Senechal, T. et al. (2013). Smile or smirk? automatic detection of spontaneous asymmetric smiles to understand viewer experience. In Int. Conf. Automatic Face and Gesture Recognition, pages 1-8.
  15. Wendland, J. et al. (2010). Retrait relationnel et signes précoces d'autisme : étude préliminaire à partir de films familiaux. Devenir, 22(1):51-72.
  16. Zakian, A. et al. (2000). Early signs of autism: A new study of family home movies. L'Encéphale, 26:38-44.
Download


Paper Citation


in Harvard Style

B. Graciano Fouquier A., Dubuisson S. and Bloch I. (2014). Towards Automated Video Analysis of Sensorimotor Assessment Data . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 735-740. DOI: 10.5220/0004912307350740


in Bibtex Style

@conference{icpram14,
author={Ana B. Graciano Fouquier and Séverine Dubuisson and Isabelle Bloch},
title={Towards Automated Video Analysis of Sensorimotor Assessment Data},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={735-740},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004912307350740},
isbn={978-989-758-018-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Towards Automated Video Analysis of Sensorimotor Assessment Data
SN - 978-989-758-018-5
AU - B. Graciano Fouquier A.
AU - Dubuisson S.
AU - Bloch I.
PY - 2014
SP - 735
EP - 740
DO - 10.5220/0004912307350740