The Possibilities of Filtering Pairs of SNPs in GWAS Studies - Exploratory Study on Public Protein-interaction and Pathway Data

Matej Lexa, Stanislav Stefanic

Abstract

Genome-wide association studies have become a standard way of discovering novel causative alleles by looking for statisticaly significant associations in patient genotyping data. The present challenge for these methods is to discover associations involving multiple interacting loci, a common phenomenon in diseases often related to epistasis. The main problem is the exponential increase in necessary computational power for every additional interacting locus considered in association tests. Several approaches have been proposed to manage this problem, including limiting analysis to interacting pairs and filtering SNPs according to external biological knowledge. Here we explore the possibilities of using public protein interaction data and pathway maps to filter out only pairs of SNPs that are likely to interact, perhaps because of epistatic mechanisms working at the protein level. After filtering all possible pairs of SNPs by their presence in common protein-protein interactions or proteins sharing a metabolic or signalling pathway, we calculate the possible reduction in computational requirements under different scenarios. We discuss these exploratory results in the context of the so-called ”lost heredity” and the usefulness of this approach for similar scenarios.

References

  1. Bush, W., Dudek, S., and Ritchie, M. (2009). Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. In Pacific Symposium on Biocomputing, volume 14, pages 368-379.
  2. Emily, M., Mailund, T., Hein, J., Schauser, L., and Schierup, M. (2009). Using biological networks to search for interacting loci in genome-wide association studies. Eur J Hum Genet, 17:1231-1240.
  3. Feizi, S., Marbach, D., Mdard, M., and Kellis, M. (2013). Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotechnology, 31:726-733.
  4. Hindorff, L., Sethupathy, P., Junkins, H., Ramos, E., Mehta, J., Collins, F., and Manolio, T. (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA, (May 27).
  5. Hua, L., Lin, H., Li, D., Li, L., and Liu, Z. (2012). Mining functional gene modules linked with rheumatoid arthritis using a snp-snp network. Genomics, Proteomics & Bioinformatics, 10(1):23-34.
  6. Huh, I.-S., Sohee-Oh, and Park, T. (2011). A chi-square test for detecting multiple joint genetic variants in genome-wide association studies. In IEEE International Conference on Bioinformatics and Biomedicine Workshop, pages 708-713.
  7. Karolchik, D., Hinrichs, A., Furey, T., Roskin, K., Sugnet, C., Haussler, D., and Kent, W. (2004). The ucsc table browser data retrieval tool. Nucleic Acids Res., 32:D493-D496.
  8. Kelder, T., Van Iersel, M., Hanspers, K., Kutmon, M., Conklin, B., Evelo, C., and Pico, A. (2012). Wikipathways: building research communities on biological pathways. Nucleic Acids Res., 40:D1301-D1307.
  9. Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A., Santonico, E., Castagnoli, L., and Cesareni, G. (2012). Mint, the molecular interaction database: 2012 update. Nucleic Acids Res., 40:D857D861.
  10. Liu, Y., Zhou, J., Liu, Z., Chen, L., and Ng, M. (2012). Construction and analysis of genome-wide snp networks. In IEEE 6th International Conference on Systems Biology (ISB).
  11. Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature, 456:18-21.
  12. Manolio, T., Collins, F., and Cox, N. e. a. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265):747-753.
  13. Mantel, N. and Haenzel, W. (1959). Statistical aspect of the analysis of data from retrospective studies of disease. J.Natl.Cancer Inst, 22:719-748.
  14. Quinlan, A. and Hall, I. (2010). Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6):841-842.
  15. Salwinski, L., Miller, C., Smith, A., Pettit, F., Bowie, J., and Eisenberg, D. (2004). The database of interacting proteins: 2004 update. Nucleic Acids Research, 32(90001):D449-D451.
  16. Sherry, S., Ward, M., Kholodov, M., Baker, J., Phan, L., Smigielski, E., and Sirotkin, K. (2001). dbsnp: the ncbi database of genetic variation. Nucleic Acids Res., 29(1):308-311.
  17. Slavin, T., Feng, T., Schnell, A., Zhu, X., and Elston, R. (2011). Two-marker association tests yield new disease associations for coronary artery disease and hypertension. Hum Genet, 130:725-733.
  18. Thorisson, G., Lancaster, O., Free, R., Hastings, R., Sarmah, P., Dash, D., Brahmachari, S., and Brookes, A. (2009). Hgvbaseg2p: a central genetic association database. Nucleic Acids Research, 37:D797-802.
  19. van Steen, K. (2011). Traveling the world of gene-gene interactions. Briefings in Bioinformatics, 13(1):1-19.
  20. Witte, J. (2010). Genome-wide association studies and beyond. Annu. Rev. Public Health, 31:9-20.
Download


Paper Citation


in Harvard Style

Lexa M. and Stefanic S. (2014). The Possibilities of Filtering Pairs of SNPs in GWAS Studies - Exploratory Study on Public Protein-interaction and Pathway Data . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 259-264. DOI: 10.5220/0004915002590264


in Bibtex Style

@conference{bioinformatics14,
author={Matej Lexa and Stanislav Stefanic},
title={The Possibilities of Filtering Pairs of SNPs in GWAS Studies - Exploratory Study on Public Protein-interaction and Pathway Data},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={259-264},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004915002590264},
isbn={978-989-758-012-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - The Possibilities of Filtering Pairs of SNPs in GWAS Studies - Exploratory Study on Public Protein-interaction and Pathway Data
SN - 978-989-758-012-3
AU - Lexa M.
AU - Stefanic S.
PY - 2014
SP - 259
EP - 264
DO - 10.5220/0004915002590264