Development of an Interhemispheric Symmetry Measurement in the Neonatal Brain

Ninah Koolen, Anneleen Dereymaeker, Katrien Jansen, Jan Vervisch, Vladimir Matic, Maarten De Vos, Gunnar Naulaers, Sabine Van Huffel


The automated analysis of the EEG pattern of the preterm newborn would be a valuable tool in the neonatal intensive care units for the prognosis of neurological development. The analysis of the (a)symmetry between the two hemispheres can provide useful information about neuronal dysfunction in early stages. Consecutive and subgroup analyses of different brain regions will allow detecting physiologic asymmetry versus pathologic asymmetry. This can improve the assessment of the long-term neurodevelopmental outcome. We show that pathological asymmetry can be measured and detected using the channel symmetry index, which comprises the difference in power spectral density of contralateral EEG signals. To distinguish pathological from physiological normal EEG patterns, we make use of one-class SVM classifiers.


  1. Cawley, G. C., 2006. Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LSSVMs. In IJCNN, IEEE: p. 1661-1668.
  2. Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. In ACM Transactions on Intelligent Systems and Technology, 2: 27:1--27:27, 2011. Software available at http://
  3. Fourie, C., van Niekerk, A., Mucina, L., 2011. Optimising a one-class SVM for geographic object based novelty detection. In Proceedings of the first AfricaGeo conference. Cape Town, South Africa: p. 1-25.
  4. Hayashi-Kurahashi, N., Kidokoro, H., Kubota, T. et al., 2012. EEG for predicting early neurodevelopment in preterm infants: an observational cohort study. In Pediatrics, 130: p.891-897.
  5. Hellström-Westas, L., Klette, H., Thorngren-Jerneck, K., et al., 2001. Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. In Neuropediatrics, 32: p. 319-324.
  6. Hellström-Westas, L. and Rosén I., 2005. Electroencephalography and brain damage in preterm infants. In Early Human Development, 81: p. 255-261.
  7. Holmes, G. and Lombroso, T., 1993. Prognostic value of background Patterns in the neonatal EEG. In Journal of Clinical Neurophysiology, p. 323-352.
  8. Hunyadi, B., De Vos, M., Signoretto, M., et al., 2011. Automatic Seizure Detection Incorporating Structural Information. In Artificial Neural Networks and Machine Learning-ICANN, 6791: p. 233-240.
  9. Hunyadi, B., De Vos, M., Van Paesschen, W., et al., 2010. A mimicking approach for human epileptic seizure detection. In Proc. of the International Biosignal Processing Conference. Berlin, Germany: p. 1-4.
  10. Koolen, N., Jansen, K., Vervisch, J., et al., 2013. Automatic burst detection based on line length in the premature EEG. In Proc. of the 6th International Conference on bio-inspired systems and signal processing (BIOSIGNALS). Barcelona, Spain: p. 105- 111.
  11. Le Bihannic, A., Beauvais, K., Busnel, A., et al., 2012. Prognostic value of EEG in very premature newborns. In Arch Dis Child Fetal Neonatal, 97: p.106-109.
  12. Okumura, A., Hayakawa, F., Kato, T., et al., 2002. Developmental outcome and types of chronic-stage EEG abnormalities in preterm infants. In Developmental Medicine and Child Neurology, 44: p. 729-734.
  13. Palmu, K., Wikström, S., Hippeläinen, E., et al., 2010. Detection of 'EEG bursts' in the early preterm EEG: Visual vs. Automated detection. In Clinical Neurophysiology, 121: p. 1015-1022.
  14. Schölkopf, B., Smola, A. J., Williamson, R. C., et al., 2000. New Support Vector Algorithms. In Neural Computation, 12: p. 1207-1245.
  15. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al., 2001. Estimating the Support of a High-Dimensional Distribution. In Neural Computation, 13: p. 1443- 1471.
  16. Smyser, C. D., Inder, T. E., Shimony, J.S., et al., 2010. Longitudinal analysis of neural network development in preterm infants. In Cerebral cortex, 20: p. 2852- 2862.
  17. Vanhatalo, S. and Kaila, K., 2006. Development of neonatal EEG activity: from phenomenology to physiology. In Seminars in fetal & neonatal medicine, 11: p. 471-478.
  18. Van Putten, M. and Tavy, D., 2004. Continuous Quantitative EEG Monitoring in Hemispheric Stroke Patients Using the Brain Symmetry index. In Stroke, 35: p. 2489-2492.
  19. Vecchierini, M. F., André, M., d'Allest, A. M., et al., 2007. Normal EEG of premature infants born between 24 and 30 weeks gestational age: Terminology definitions and maturation aspects. In Clinical Neurophysiology, 37: p.311-323.

Paper Citation

in Harvard Style

Koolen N., Dereymaeker A., Jansen K., Vervisch J., Matic V., De Vos M., Naulaers G. and Van Huffel S. (2014). Development of an Interhemispheric Symmetry Measurement in the Neonatal Brain . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 765-770. DOI: 10.5220/0004922407650770

in Bibtex Style

author={Ninah Koolen and Anneleen Dereymaeker and Katrien Jansen and Jan Vervisch and Vladimir Matic and Maarten De Vos and Gunnar Naulaers and Sabine Van Huffel},
title={Development of an Interhemispheric Symmetry Measurement in the Neonatal Brain},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},

in EndNote Style

JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Development of an Interhemispheric Symmetry Measurement in the Neonatal Brain
SN - 978-989-758-018-5
AU - Koolen N.
AU - Dereymaeker A.
AU - Jansen K.
AU - Vervisch J.
AU - Matic V.
AU - De Vos M.
AU - Naulaers G.
AU - Van Huffel S.
PY - 2014
SP - 765
EP - 770
DO - 10.5220/0004922407650770