Fuzzy-Ontology-Enrichment-based Framework for Semantic Search

Hajer Baazaoui-Zghal, Henda Ben Ghezala

Abstract

The dominance of information retrieval on the Web makes integrating and designing ontologies for the on-line Information Retrieval Systems (IRS) an attractive research area. In addition to domain ontology, some attempts have been recently made to integrate fuzzy set theory with ontology, to provide a solution to vague and uncertain information. This paper presents a framework for semantic search based on ontology enrichment and fuzziness (FuzzOntoEnrichIR). FuzzOntoEnrichIR main components are: (1) a fuzzy information retrieval component, (2) an incremental ontology enrichment component and (3) an ontology repository component. The framework aims on the one hand to capitalize and formulate extraction-ontology rules based on a meta-ontology. On the other hand, it aims to integrate the domain ontology enrichment and the fuzzy ontology building in the IR process. The framework has been implemented and experimented to demonstrate the effectiveness and validity of the proposal.

References

  1. Akinribido, C. T., Afolabi, B. S., Akhigbe, B. I., and Udo, I. J. (2011). A fuzzy-ontology based information retrieval system for relevant feedback. In International Journal of Computer Science Issues.
  2. Baazaoui-Zghal, H., Aufaure, M.-A., and Mustapha, N. B. (2007a). Extraction of ontologies from web pages: Conceptual modelling and tourism application. Journal of Internet Technology (JIT), Special Issue on Ontology Technology and Its Applications, 8:410-421.
  3. Baazaoui-Zghal, H., Aufaure, M.-A., and Mustapha, N. B. (2007b). A model-driven approach of ontological components for on- line semantic web information retrieval. Journal of Web Engineering, 6(4):309-336.
  4. Baazaoui-Zghal, H., Aufaure, M.-A., and Soussi, R. (2008). Towards an on-line semantic information retrieval system based on fuzzy ontologies. JDIM, 6(5):375-385.
  5. Bordogna, G., Pagani, M., Pasi, G., and Psaila, G. (2009). Managing uncertainty in location-based queries. Fuzzy Sets and Systems, 160(15):2241-2252.
  6. Calegari, S. and Ciucci, D. (2006). Towards a fuzzy ontology definition and a fuzzy extension of an ontology editor. In ICEIS (Selected Papers), pages 147-158.
  7. Chien, B.-C., Hu, C.-H., and Ju, M.-Y. (2010). Ontologybased information retrieval using fuzzy concept documentation. Cybernetics and Systems, 41(1):4-16.
  8. Colleoni, F., Calegari, S., Ciucci, D., and Dominoni, M. (2009). Ocean project a prototype of aiwbes based on fuzzy ontology. In ISDA, pages 944-949.
  9. Jiang, J. J. and Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. CoRR, cmp-lg/9709008.
  10. Lee, C.-S., Jian, Z.-W., and Huang, L.-K. (2005). A fuzzy ontology and its application to news summarization. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(5):859-880.
  11. Lee, C.-W., Shih, C.-W., Day, M.-Y., Tsai, T.-H., Jiang, T.- J., Wu, C.-W., Sung, C.-L., Chen, Y.-R., Wu, S.-H., Hsu, and Wen-Lian. Asqa: Academia sinica question answering system for ntcir-5 clqa.
  12. McGuinness, D. L. (1998). Ontological issues for knowledge-enhanced search. In Proceedings of Formal Ontology in Information Systems.
  13. Miller”, G. A. (1995). ”wordnet: A lexical database for english”. Commun. ACM, 38(11):39-41.
  14. Parry, D. (2006). Chapter 2 fuzzy ontologies for information retrieval on the fWWWg. In Sanchez, E., editor, Fuzzy Logic and the Semantic Web, volume 1 of Capturing Intelligence, pages 21 - 48. Elsevier.
  15. Quan, T. T., Hui, S. C., Fong, A. C. M., and Cao, T. H. (2006). Automatic fuzzy ontology generation for semantic web. IEEE Trans. Knowl. Data Eng., 18(6):842-856.
  16. Sayed, A. E., Hacid, H., and Zighed, D. A. (2007). Using semantic distance in a content-based heterogeneous information retrieval system. In MCD, pages 224- 237.
  17. Seco, N., Veale, T., and Hayes, J. (2004). An intrinsic information content metric for semantic similarity in wordnet. In ECAI, pages 1089-1090.
  18. Widyantoro, D. and Yen, J. (2001). A fuzzy ontology-based abstract search engine and its user studies. In Fuzzy Systems, 2001. The 10th IEEE International Conference on, volume 3, pages 1291-1294.
  19. Zhou, L., Zhang, L., Chen, J., Xie, Q., Ding, Q., and Sun, Z. X. (2006). The application of fuzzy ontology in design management. In IC-AI, pages 278-282.
Download


Paper Citation


in Harvard Style

Baazaoui-Zghal H. and Ben Ghezala H. (2014). Fuzzy-Ontology-Enrichment-based Framework for Semantic Search . In Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-758-024-6, pages 123-130. DOI: 10.5220/0004923801230130


in Bibtex Style

@conference{webist14,
author={Hajer Baazaoui-Zghal and Henda Ben Ghezala},
title={Fuzzy-Ontology-Enrichment-based Framework for Semantic Search},
booktitle={Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},
year={2014},
pages={123-130},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004923801230130},
isbn={978-989-758-024-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
TI - Fuzzy-Ontology-Enrichment-based Framework for Semantic Search
SN - 978-989-758-024-6
AU - Baazaoui-Zghal H.
AU - Ben Ghezala H.
PY - 2014
SP - 123
EP - 130
DO - 10.5220/0004923801230130